"atomic bomb" commit. Reorganized OpenCV directory structure
This commit is contained in:
439
3rdparty/lapack/dstein.c
vendored
Normal file
439
3rdparty/lapack/dstein.c
vendored
Normal file
@@ -0,0 +1,439 @@
|
||||
#include "clapack.h"
|
||||
|
||||
/* Table of constant values */
|
||||
|
||||
static integer c__2 = 2;
|
||||
static integer c__1 = 1;
|
||||
static integer c_n1 = -1;
|
||||
|
||||
/* Subroutine */ int dstein_(integer *n, doublereal *d__, doublereal *e,
|
||||
integer *m, doublereal *w, integer *iblock, integer *isplit,
|
||||
doublereal *z__, integer *ldz, doublereal *work, integer *iwork,
|
||||
integer *ifail, integer *info)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer z_dim1, z_offset, i__1, i__2, i__3;
|
||||
doublereal d__1, d__2, d__3, d__4, d__5;
|
||||
|
||||
/* Builtin functions */
|
||||
double sqrt(doublereal);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, b1, j1, bn;
|
||||
doublereal xj, scl, eps, sep, nrm, tol;
|
||||
integer its;
|
||||
doublereal xjm, ztr, eps1;
|
||||
integer jblk, nblk;
|
||||
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
|
||||
integer *);
|
||||
integer jmax;
|
||||
extern doublereal dnrm2_(integer *, doublereal *, integer *);
|
||||
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
||||
integer *);
|
||||
integer iseed[4], gpind, iinfo;
|
||||
extern doublereal dasum_(integer *, doublereal *, integer *);
|
||||
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
||||
doublereal *, integer *), daxpy_(integer *, doublereal *,
|
||||
doublereal *, integer *, doublereal *, integer *);
|
||||
doublereal ortol;
|
||||
integer indrv1, indrv2, indrv3, indrv4, indrv5;
|
||||
extern doublereal dlamch_(char *);
|
||||
extern /* Subroutine */ int dlagtf_(integer *, doublereal *, doublereal *,
|
||||
doublereal *, doublereal *, doublereal *, doublereal *, integer *
|
||||
, integer *);
|
||||
extern integer idamax_(integer *, doublereal *, integer *);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *), dlagts_(
|
||||
integer *, integer *, doublereal *, doublereal *, doublereal *,
|
||||
doublereal *, integer *, doublereal *, doublereal *, integer *);
|
||||
integer nrmchk;
|
||||
extern /* Subroutine */ int dlarnv_(integer *, integer *, integer *,
|
||||
doublereal *);
|
||||
integer blksiz;
|
||||
doublereal onenrm, dtpcrt, pertol;
|
||||
|
||||
|
||||
/* -- LAPACK routine (version 3.1) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DSTEIN computes the eigenvectors of a real symmetric tridiagonal */
|
||||
/* matrix T corresponding to specified eigenvalues, using inverse */
|
||||
/* iteration. */
|
||||
|
||||
/* The maximum number of iterations allowed for each eigenvector is */
|
||||
/* specified by an internal parameter MAXITS (currently set to 5). */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* The order of the matrix. N >= 0. */
|
||||
|
||||
/* D (input) DOUBLE PRECISION array, dimension (N) */
|
||||
/* The n diagonal elements of the tridiagonal matrix T. */
|
||||
|
||||
/* E (input) DOUBLE PRECISION array, dimension (N-1) */
|
||||
/* The (n-1) subdiagonal elements of the tridiagonal matrix */
|
||||
/* T, in elements 1 to N-1. */
|
||||
|
||||
/* M (input) INTEGER */
|
||||
/* The number of eigenvectors to be found. 0 <= M <= N. */
|
||||
|
||||
/* W (input) DOUBLE PRECISION array, dimension (N) */
|
||||
/* The first M elements of W contain the eigenvalues for */
|
||||
/* which eigenvectors are to be computed. The eigenvalues */
|
||||
/* should be grouped by split-off block and ordered from */
|
||||
/* smallest to largest within the block. ( The output array */
|
||||
/* W from DSTEBZ with ORDER = 'B' is expected here. ) */
|
||||
|
||||
/* IBLOCK (input) INTEGER array, dimension (N) */
|
||||
/* The submatrix indices associated with the corresponding */
|
||||
/* eigenvalues in W; IBLOCK(i)=1 if eigenvalue W(i) belongs to */
|
||||
/* the first submatrix from the top, =2 if W(i) belongs to */
|
||||
/* the second submatrix, etc. ( The output array IBLOCK */
|
||||
/* from DSTEBZ is expected here. ) */
|
||||
|
||||
/* ISPLIT (input) INTEGER array, dimension (N) */
|
||||
/* The splitting points, at which T breaks up into submatrices. */
|
||||
/* The first submatrix consists of rows/columns 1 to */
|
||||
/* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
|
||||
/* through ISPLIT( 2 ), etc. */
|
||||
/* ( The output array ISPLIT from DSTEBZ is expected here. ) */
|
||||
|
||||
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, M) */
|
||||
/* The computed eigenvectors. The eigenvector associated */
|
||||
/* with the eigenvalue W(i) is stored in the i-th column of */
|
||||
/* Z. Any vector which fails to converge is set to its current */
|
||||
/* iterate after MAXITS iterations. */
|
||||
|
||||
/* LDZ (input) INTEGER */
|
||||
/* The leading dimension of the array Z. LDZ >= max(1,N). */
|
||||
|
||||
/* WORK (workspace) DOUBLE PRECISION array, dimension (5*N) */
|
||||
|
||||
/* IWORK (workspace) INTEGER array, dimension (N) */
|
||||
|
||||
/* IFAIL (output) INTEGER array, dimension (M) */
|
||||
/* On normal exit, all elements of IFAIL are zero. */
|
||||
/* If one or more eigenvectors fail to converge after */
|
||||
/* MAXITS iterations, then their indices are stored in */
|
||||
/* array IFAIL. */
|
||||
|
||||
/* INFO (output) INTEGER */
|
||||
/* = 0: successful exit. */
|
||||
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
||||
/* > 0: if INFO = i, then i eigenvectors failed to converge */
|
||||
/* in MAXITS iterations. Their indices are stored in */
|
||||
/* array IFAIL. */
|
||||
|
||||
/* Internal Parameters */
|
||||
/* =================== */
|
||||
|
||||
/* MAXITS INTEGER, default = 5 */
|
||||
/* The maximum number of iterations performed. */
|
||||
|
||||
/* EXTRA INTEGER, default = 2 */
|
||||
/* The number of iterations performed after norm growth */
|
||||
/* criterion is satisfied, should be at least 1. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Local Arrays .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Executable Statements .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--d__;
|
||||
--e;
|
||||
--w;
|
||||
--iblock;
|
||||
--isplit;
|
||||
z_dim1 = *ldz;
|
||||
z_offset = 1 + z_dim1;
|
||||
z__ -= z_offset;
|
||||
--work;
|
||||
--iwork;
|
||||
--ifail;
|
||||
|
||||
/* Function Body */
|
||||
*info = 0;
|
||||
i__1 = *m;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
ifail[i__] = 0;
|
||||
/* L10: */
|
||||
}
|
||||
|
||||
if (*n < 0) {
|
||||
*info = -1;
|
||||
} else if (*m < 0 || *m > *n) {
|
||||
*info = -4;
|
||||
} else if (*ldz < max(1,*n)) {
|
||||
*info = -9;
|
||||
} else {
|
||||
i__1 = *m;
|
||||
for (j = 2; j <= i__1; ++j) {
|
||||
if (iblock[j] < iblock[j - 1]) {
|
||||
*info = -6;
|
||||
goto L30;
|
||||
}
|
||||
if (iblock[j] == iblock[j - 1] && w[j] < w[j - 1]) {
|
||||
*info = -5;
|
||||
goto L30;
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
L30:
|
||||
;
|
||||
}
|
||||
|
||||
if (*info != 0) {
|
||||
i__1 = -(*info);
|
||||
xerbla_("DSTEIN", &i__1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible */
|
||||
|
||||
if (*n == 0 || *m == 0) {
|
||||
return 0;
|
||||
} else if (*n == 1) {
|
||||
z__[z_dim1 + 1] = 1.;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Get machine constants. */
|
||||
|
||||
eps = dlamch_("Precision");
|
||||
|
||||
/* Initialize seed for random number generator DLARNV. */
|
||||
|
||||
for (i__ = 1; i__ <= 4; ++i__) {
|
||||
iseed[i__ - 1] = 1;
|
||||
/* L40: */
|
||||
}
|
||||
|
||||
/* Initialize pointers. */
|
||||
|
||||
indrv1 = 0;
|
||||
indrv2 = indrv1 + *n;
|
||||
indrv3 = indrv2 + *n;
|
||||
indrv4 = indrv3 + *n;
|
||||
indrv5 = indrv4 + *n;
|
||||
|
||||
/* Compute eigenvectors of matrix blocks. */
|
||||
|
||||
j1 = 1;
|
||||
i__1 = iblock[*m];
|
||||
for (nblk = 1; nblk <= i__1; ++nblk) {
|
||||
|
||||
/* Find starting and ending indices of block nblk. */
|
||||
|
||||
if (nblk == 1) {
|
||||
b1 = 1;
|
||||
} else {
|
||||
b1 = isplit[nblk - 1] + 1;
|
||||
}
|
||||
bn = isplit[nblk];
|
||||
blksiz = bn - b1 + 1;
|
||||
if (blksiz == 1) {
|
||||
goto L60;
|
||||
}
|
||||
gpind = b1;
|
||||
|
||||
/* Compute reorthogonalization criterion and stopping criterion. */
|
||||
|
||||
onenrm = (d__1 = d__[b1], abs(d__1)) + (d__2 = e[b1], abs(d__2));
|
||||
/* Computing MAX */
|
||||
d__3 = onenrm, d__4 = (d__1 = d__[bn], abs(d__1)) + (d__2 = e[bn - 1],
|
||||
abs(d__2));
|
||||
onenrm = max(d__3,d__4);
|
||||
i__2 = bn - 1;
|
||||
for (i__ = b1 + 1; i__ <= i__2; ++i__) {
|
||||
/* Computing MAX */
|
||||
d__4 = onenrm, d__5 = (d__1 = d__[i__], abs(d__1)) + (d__2 = e[
|
||||
i__ - 1], abs(d__2)) + (d__3 = e[i__], abs(d__3));
|
||||
onenrm = max(d__4,d__5);
|
||||
/* L50: */
|
||||
}
|
||||
ortol = onenrm * .001;
|
||||
|
||||
dtpcrt = sqrt(.1 / blksiz);
|
||||
|
||||
/* Loop through eigenvalues of block nblk. */
|
||||
|
||||
L60:
|
||||
jblk = 0;
|
||||
i__2 = *m;
|
||||
for (j = j1; j <= i__2; ++j) {
|
||||
if (iblock[j] != nblk) {
|
||||
j1 = j;
|
||||
goto L160;
|
||||
}
|
||||
++jblk;
|
||||
xj = w[j];
|
||||
|
||||
/* Skip all the work if the block size is one. */
|
||||
|
||||
if (blksiz == 1) {
|
||||
work[indrv1 + 1] = 1.;
|
||||
goto L120;
|
||||
}
|
||||
|
||||
/* If eigenvalues j and j-1 are too close, add a relatively */
|
||||
/* small perturbation. */
|
||||
|
||||
if (jblk > 1) {
|
||||
eps1 = (d__1 = eps * xj, abs(d__1));
|
||||
pertol = eps1 * 10.;
|
||||
sep = xj - xjm;
|
||||
if (sep < pertol) {
|
||||
xj = xjm + pertol;
|
||||
}
|
||||
}
|
||||
|
||||
its = 0;
|
||||
nrmchk = 0;
|
||||
|
||||
/* Get random starting vector. */
|
||||
|
||||
dlarnv_(&c__2, iseed, &blksiz, &work[indrv1 + 1]);
|
||||
|
||||
/* Copy the matrix T so it won't be destroyed in factorization. */
|
||||
|
||||
dcopy_(&blksiz, &d__[b1], &c__1, &work[indrv4 + 1], &c__1);
|
||||
i__3 = blksiz - 1;
|
||||
dcopy_(&i__3, &e[b1], &c__1, &work[indrv2 + 2], &c__1);
|
||||
i__3 = blksiz - 1;
|
||||
dcopy_(&i__3, &e[b1], &c__1, &work[indrv3 + 1], &c__1);
|
||||
|
||||
/* Compute LU factors with partial pivoting ( PT = LU ) */
|
||||
|
||||
tol = 0.;
|
||||
dlagtf_(&blksiz, &work[indrv4 + 1], &xj, &work[indrv2 + 2], &work[
|
||||
indrv3 + 1], &tol, &work[indrv5 + 1], &iwork[1], &iinfo);
|
||||
|
||||
/* Update iteration count. */
|
||||
|
||||
L70:
|
||||
++its;
|
||||
if (its > 5) {
|
||||
goto L100;
|
||||
}
|
||||
|
||||
/* Normalize and scale the righthand side vector Pb. */
|
||||
|
||||
/* Computing MAX */
|
||||
d__2 = eps, d__3 = (d__1 = work[indrv4 + blksiz], abs(d__1));
|
||||
scl = blksiz * onenrm * max(d__2,d__3) / dasum_(&blksiz, &work[
|
||||
indrv1 + 1], &c__1);
|
||||
dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
|
||||
|
||||
/* Solve the system LU = Pb. */
|
||||
|
||||
dlagts_(&c_n1, &blksiz, &work[indrv4 + 1], &work[indrv2 + 2], &
|
||||
work[indrv3 + 1], &work[indrv5 + 1], &iwork[1], &work[
|
||||
indrv1 + 1], &tol, &iinfo);
|
||||
|
||||
/* Reorthogonalize by modified Gram-Schmidt if eigenvalues are */
|
||||
/* close enough. */
|
||||
|
||||
if (jblk == 1) {
|
||||
goto L90;
|
||||
}
|
||||
if ((d__1 = xj - xjm, abs(d__1)) > ortol) {
|
||||
gpind = j;
|
||||
}
|
||||
if (gpind != j) {
|
||||
i__3 = j - 1;
|
||||
for (i__ = gpind; i__ <= i__3; ++i__) {
|
||||
ztr = -ddot_(&blksiz, &work[indrv1 + 1], &c__1, &z__[b1 +
|
||||
i__ * z_dim1], &c__1);
|
||||
daxpy_(&blksiz, &ztr, &z__[b1 + i__ * z_dim1], &c__1, &
|
||||
work[indrv1 + 1], &c__1);
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
|
||||
/* Check the infinity norm of the iterate. */
|
||||
|
||||
L90:
|
||||
jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
|
||||
nrm = (d__1 = work[indrv1 + jmax], abs(d__1));
|
||||
|
||||
/* Continue for additional iterations after norm reaches */
|
||||
/* stopping criterion. */
|
||||
|
||||
if (nrm < dtpcrt) {
|
||||
goto L70;
|
||||
}
|
||||
++nrmchk;
|
||||
if (nrmchk < 3) {
|
||||
goto L70;
|
||||
}
|
||||
|
||||
goto L110;
|
||||
|
||||
/* If stopping criterion was not satisfied, update info and */
|
||||
/* store eigenvector number in array ifail. */
|
||||
|
||||
L100:
|
||||
++(*info);
|
||||
ifail[*info] = j;
|
||||
|
||||
/* Accept iterate as jth eigenvector. */
|
||||
|
||||
L110:
|
||||
scl = 1. / dnrm2_(&blksiz, &work[indrv1 + 1], &c__1);
|
||||
jmax = idamax_(&blksiz, &work[indrv1 + 1], &c__1);
|
||||
if (work[indrv1 + jmax] < 0.) {
|
||||
scl = -scl;
|
||||
}
|
||||
dscal_(&blksiz, &scl, &work[indrv1 + 1], &c__1);
|
||||
L120:
|
||||
i__3 = *n;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
z__[i__ + j * z_dim1] = 0.;
|
||||
/* L130: */
|
||||
}
|
||||
i__3 = blksiz;
|
||||
for (i__ = 1; i__ <= i__3; ++i__) {
|
||||
z__[b1 + i__ - 1 + j * z_dim1] = work[indrv1 + i__];
|
||||
/* L140: */
|
||||
}
|
||||
|
||||
/* Save the shift to check eigenvalue spacing at next */
|
||||
/* iteration. */
|
||||
|
||||
xjm = xj;
|
||||
|
||||
/* L150: */
|
||||
}
|
||||
L160:
|
||||
;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSTEIN */
|
||||
|
||||
} /* dstein_ */
|
Reference in New Issue
Block a user