"atomic bomb" commit. Reorganized OpenCV directory structure
This commit is contained in:
653
3rdparty/flann/algorithms/kdtree_index.h
vendored
Normal file
653
3rdparty/flann/algorithms/kdtree_index.h
vendored
Normal file
@@ -0,0 +1,653 @@
|
||||
/***********************************************************************
|
||||
* Software License Agreement (BSD License)
|
||||
*
|
||||
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
||||
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
||||
*
|
||||
* THE BSD LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
||||
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
||||
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||||
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*************************************************************************/
|
||||
|
||||
#ifndef KDTREE_H
|
||||
#define KDTREE_H
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <cassert>
|
||||
|
||||
#include "heap.h"
|
||||
#include "common.h"
|
||||
#include "constants.h"
|
||||
#include "allocator.h"
|
||||
#include "matrix.h"
|
||||
#include "result_set.h"
|
||||
#include "random.h"
|
||||
#include "nn_index.h"
|
||||
#include "saving.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
|
||||
namespace flann
|
||||
{
|
||||
|
||||
|
||||
/**
|
||||
* Randomized kd-tree index
|
||||
*
|
||||
* Contains the k-d trees and other information for indexing a set of points
|
||||
* for nearest-neighbor matching.
|
||||
*/
|
||||
class KDTreeIndex : public NNIndex
|
||||
{
|
||||
|
||||
enum {
|
||||
/**
|
||||
* To improve efficiency, only SAMPLE_MEAN random values are used to
|
||||
* compute the mean and variance at each level when building a tree.
|
||||
* A value of 100 seems to perform as well as using all values.
|
||||
*/
|
||||
SAMPLE_MEAN = 100,
|
||||
/**
|
||||
* Top random dimensions to consider
|
||||
*
|
||||
* When creating random trees, the dimension on which to subdivide is
|
||||
* selected at random from among the top RAND_DIM dimensions with the
|
||||
* highest variance. A value of 5 works well.
|
||||
*/
|
||||
RAND_DIM=5
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* Number of randomized trees that are used
|
||||
*/
|
||||
int numTrees;
|
||||
|
||||
/**
|
||||
* Array of indices to vectors in the dataset. When doing lookup,
|
||||
* this is used instead to mark checkID.
|
||||
*/
|
||||
int* vind;
|
||||
|
||||
/**
|
||||
* An unique ID for each lookup.
|
||||
*/
|
||||
int checkID;
|
||||
|
||||
/**
|
||||
* The dataset used by this index
|
||||
*/
|
||||
const Matrix<float> dataset;
|
||||
|
||||
int size_;
|
||||
int veclen_;
|
||||
|
||||
|
||||
float* mean;
|
||||
float* var;
|
||||
|
||||
|
||||
/*--------------------- Internal Data Structures --------------------------*/
|
||||
|
||||
/**
|
||||
* A node of the binary k-d tree.
|
||||
*
|
||||
* This is All nodes that have vec[divfeat] < divval are placed in the
|
||||
* child1 subtree, else child2., A leaf node is indicated if both children are NULL.
|
||||
*/
|
||||
struct TreeSt {
|
||||
/**
|
||||
* Index of the vector feature used for subdivision.
|
||||
* If this is a leaf node (both children are NULL) then
|
||||
* this holds vector index for this leaf.
|
||||
*/
|
||||
int divfeat;
|
||||
/**
|
||||
* The value used for subdivision.
|
||||
*/
|
||||
float divval;
|
||||
/**
|
||||
* The child nodes.
|
||||
*/
|
||||
TreeSt *child1, *child2;
|
||||
};
|
||||
typedef TreeSt* Tree;
|
||||
|
||||
/**
|
||||
* Array of k-d trees used to find neighbors.
|
||||
*/
|
||||
Tree* trees;
|
||||
typedef BranchStruct<Tree> BranchSt;
|
||||
typedef BranchSt* Branch;
|
||||
/**
|
||||
* Priority queue storing intermediate branches in the best-bin-first search
|
||||
*/
|
||||
Heap<BranchSt>* heap;
|
||||
|
||||
|
||||
/**
|
||||
* Pooled memory allocator.
|
||||
*
|
||||
* Using a pooled memory allocator is more efficient
|
||||
* than allocating memory directly when there is a large
|
||||
* number small of memory allocations.
|
||||
*/
|
||||
PooledAllocator pool;
|
||||
|
||||
|
||||
|
||||
public:
|
||||
|
||||
flann_algorithm_t getType() const
|
||||
{
|
||||
return KDTREE;
|
||||
}
|
||||
|
||||
/**
|
||||
* KDTree constructor
|
||||
*
|
||||
* Params:
|
||||
* inputData = dataset with the input features
|
||||
* params = parameters passed to the kdtree algorithm
|
||||
*/
|
||||
KDTreeIndex(const Matrix<float>& inputData, const KDTreeIndexParams& params = KDTreeIndexParams() ) : dataset(inputData)
|
||||
{
|
||||
size_ = dataset.rows;
|
||||
veclen_ = dataset.cols;
|
||||
|
||||
numTrees = params.trees;
|
||||
trees = new Tree[numTrees];
|
||||
|
||||
// get the parameters
|
||||
// if (params.find("trees") != params.end()) {
|
||||
// numTrees = (int)params["trees"];
|
||||
// trees = new Tree[numTrees];
|
||||
// }
|
||||
// else {
|
||||
// numTrees = -1;
|
||||
// trees = NULL;
|
||||
// }
|
||||
heap = new Heap<BranchSt>(size_);
|
||||
checkID = -1000;
|
||||
|
||||
// Create a permutable array of indices to the input vectors.
|
||||
vind = new int[size_];
|
||||
for (int i = 0; i < size_; i++) {
|
||||
vind[i] = i;
|
||||
}
|
||||
|
||||
mean = new float[veclen_];
|
||||
var = new float[veclen_];
|
||||
}
|
||||
|
||||
/**
|
||||
* Standard destructor
|
||||
*/
|
||||
~KDTreeIndex()
|
||||
{
|
||||
delete[] vind;
|
||||
if (trees!=NULL) {
|
||||
delete[] trees;
|
||||
}
|
||||
delete heap;
|
||||
delete[] mean;
|
||||
delete[] var;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Builds the index
|
||||
*/
|
||||
void buildIndex()
|
||||
{
|
||||
/* Construct the randomized trees. */
|
||||
for (int i = 0; i < numTrees; i++) {
|
||||
/* Randomize the order of vectors to allow for unbiased sampling. */
|
||||
for (int j = size_; j > 0; --j) {
|
||||
// int rand = cast(int) (drand48() * size);
|
||||
int rnd = rand_int(j);
|
||||
assert(rnd >=0 && rnd < size_);
|
||||
swap(vind[j-1], vind[rnd]);
|
||||
}
|
||||
trees[i] = NULL;
|
||||
divideTree(&trees[i], 0, size_ - 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void saveIndex(FILE* stream)
|
||||
{
|
||||
save_header(stream, *this);
|
||||
save_value(stream, numTrees);
|
||||
for (int i=0;i<numTrees;++i) {
|
||||
save_tree(stream, trees[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void loadIndex(FILE* stream)
|
||||
{
|
||||
IndexHeader header = load_header(stream);
|
||||
|
||||
if (header.rows!=size() || header.cols!=veclen()) {
|
||||
throw FLANNException("The index saved belongs to a different dataset");
|
||||
}
|
||||
load_value(stream, numTrees);
|
||||
|
||||
if (trees!=NULL) {
|
||||
delete[] trees;
|
||||
}
|
||||
trees = new Tree[numTrees];
|
||||
for (int i=0;i<numTrees;++i) {
|
||||
load_tree(stream,trees[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Returns size of index.
|
||||
*/
|
||||
int size() const
|
||||
{
|
||||
return size_;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the length of an index feature.
|
||||
*/
|
||||
int veclen() const
|
||||
{
|
||||
return veclen_;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Computes the inde memory usage
|
||||
* Returns: memory used by the index
|
||||
*/
|
||||
int usedMemory() const
|
||||
{
|
||||
return pool.usedMemory+pool.wastedMemory+dataset.rows*sizeof(int); // pool memory and vind array memory
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Find set of nearest neighbors to vec. Their indices are stored inside
|
||||
* the result object.
|
||||
*
|
||||
* Params:
|
||||
* result = the result object in which the indices of the nearest-neighbors are stored
|
||||
* vec = the vector for which to search the nearest neighbors
|
||||
* maxCheck = the maximum number of restarts (in a best-bin-first manner)
|
||||
*/
|
||||
void findNeighbors(ResultSet& result, const float* vec, const SearchParams& searchParams)
|
||||
{
|
||||
int maxChecks = searchParams.checks;
|
||||
|
||||
if (maxChecks<0) {
|
||||
getExactNeighbors(result, vec);
|
||||
} else {
|
||||
getNeighbors(result, vec, maxChecks);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void continueSearch(ResultSet& result, float* vec, int maxCheck)
|
||||
{
|
||||
BranchSt branch;
|
||||
|
||||
int checkCount = 0;
|
||||
|
||||
/* Keep searching other branches from heap until finished. */
|
||||
while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
|
||||
searchLevel(result, vec, branch.node,branch.mindistsq, checkCount, maxCheck);
|
||||
}
|
||||
|
||||
assert(result.full());
|
||||
}
|
||||
|
||||
|
||||
// Params estimateSearchParams(float precision, Dataset<float>* testset = NULL)
|
||||
// {
|
||||
// Params params;
|
||||
//
|
||||
// return params;
|
||||
// }
|
||||
|
||||
|
||||
private:
|
||||
|
||||
|
||||
void save_tree(FILE* stream, Tree tree)
|
||||
{
|
||||
save_value(stream, *tree);
|
||||
if (tree->child1!=NULL) {
|
||||
save_tree(stream, tree->child1);
|
||||
}
|
||||
if (tree->child2!=NULL) {
|
||||
save_tree(stream, tree->child2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void load_tree(FILE* stream, Tree& tree)
|
||||
{
|
||||
tree = pool.allocate<TreeSt>();
|
||||
load_value(stream, *tree);
|
||||
if (tree->child1!=NULL) {
|
||||
load_tree(stream, tree->child1);
|
||||
}
|
||||
if (tree->child2!=NULL) {
|
||||
load_tree(stream, tree->child2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Create a tree node that subdivides the list of vecs from vind[first]
|
||||
* to vind[last]. The routine is called recursively on each sublist.
|
||||
* Place a pointer to this new tree node in the location pTree.
|
||||
*
|
||||
* Params: pTree = the new node to create
|
||||
* first = index of the first vector
|
||||
* last = index of the last vector
|
||||
*/
|
||||
void divideTree(Tree* pTree, int first, int last)
|
||||
{
|
||||
Tree node;
|
||||
|
||||
node = pool.allocate<TreeSt>(); // allocate memory
|
||||
*pTree = node;
|
||||
|
||||
/* If only one exemplar remains, then make this a leaf node. */
|
||||
if (first == last) {
|
||||
node->child1 = node->child2 = NULL; /* Mark as leaf node. */
|
||||
node->divfeat = vind[first]; /* Store index of this vec. */
|
||||
} else {
|
||||
chooseDivision(node, first, last);
|
||||
subdivide(node, first, last);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Choose which feature to use in order to subdivide this set of vectors.
|
||||
* Make a random choice among those with the highest variance, and use
|
||||
* its variance as the threshold value.
|
||||
*/
|
||||
void chooseDivision(Tree node, int first, int last)
|
||||
{
|
||||
memset(mean,0,veclen_*sizeof(float));
|
||||
memset(var,0,veclen_*sizeof(float));
|
||||
|
||||
/* Compute mean values. Only the first SAMPLE_MEAN values need to be
|
||||
sampled to get a good estimate.
|
||||
*/
|
||||
int end = min(first + SAMPLE_MEAN, last);
|
||||
int count = end - first + 1;
|
||||
for (int j = first; j <= end; ++j) {
|
||||
float* v = dataset[vind[j]];
|
||||
for (int k=0; k<veclen_; ++k) {
|
||||
mean[k] += v[k];
|
||||
}
|
||||
}
|
||||
for (int k=0; k<veclen_; ++k) {
|
||||
mean[k] /= count;
|
||||
}
|
||||
|
||||
/* Compute variances (no need to divide by count). */
|
||||
for (int j = first; j <= end; ++j) {
|
||||
float* v = dataset[vind[j]];
|
||||
for (int k=0; k<veclen_; ++k) {
|
||||
float dist = v[k] - mean[k];
|
||||
var[k] += dist * dist;
|
||||
}
|
||||
}
|
||||
/* Select one of the highest variance indices at random. */
|
||||
node->divfeat = selectDivision(var);
|
||||
node->divval = mean[node->divfeat];
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Select the top RAND_DIM largest values from v and return the index of
|
||||
* one of these selected at random.
|
||||
*/
|
||||
int selectDivision(float* v)
|
||||
{
|
||||
int num = 0;
|
||||
int topind[RAND_DIM];
|
||||
|
||||
/* Create a list of the indices of the top RAND_DIM values. */
|
||||
for (int i = 0; i < veclen_; ++i) {
|
||||
if (num < RAND_DIM || v[i] > v[topind[num-1]]) {
|
||||
/* Put this element at end of topind. */
|
||||
if (num < RAND_DIM) {
|
||||
topind[num++] = i; /* Add to list. */
|
||||
}
|
||||
else {
|
||||
topind[num-1] = i; /* Replace last element. */
|
||||
}
|
||||
/* Bubble end value down to right location by repeated swapping. */
|
||||
int j = num - 1;
|
||||
while (j > 0 && v[topind[j]] > v[topind[j-1]]) {
|
||||
swap(topind[j], topind[j-1]);
|
||||
--j;
|
||||
}
|
||||
}
|
||||
}
|
||||
/* Select a random integer in range [0,num-1], and return that index. */
|
||||
// int rand = cast(int) (drand48() * num);
|
||||
int rnd = rand_int(num);
|
||||
assert(rnd >=0 && rnd < num);
|
||||
return topind[rnd];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Subdivide the list of exemplars using the feature and division
|
||||
* value given in this node. Call divideTree recursively on each list.
|
||||
*/
|
||||
void subdivide(Tree node, int first, int last)
|
||||
{
|
||||
/* Move vector indices for left subtree to front of list. */
|
||||
int i = first;
|
||||
int j = last;
|
||||
while (i <= j) {
|
||||
int ind = vind[i];
|
||||
float val = dataset[ind][node->divfeat];
|
||||
if (val < node->divval) {
|
||||
++i;
|
||||
} else {
|
||||
/* Move to end of list by swapping vind i and j. */
|
||||
swap(vind[i], vind[j]);
|
||||
--j;
|
||||
}
|
||||
}
|
||||
/* If either list is empty, it means we have hit the unlikely case
|
||||
in which all remaining features are identical. Split in the middle
|
||||
to maintain a balanced tree.
|
||||
*/
|
||||
if ( (i == first) || (i == last+1)) {
|
||||
i = (first+last+1)/2;
|
||||
}
|
||||
|
||||
divideTree(& node->child1, first, i - 1);
|
||||
divideTree(& node->child2, i, last);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/**
|
||||
* Performs an exact nearest neighbor search. The exact search performs a full
|
||||
* traversal of the tree.
|
||||
*/
|
||||
void getExactNeighbors(ResultSet& result, const float* vec)
|
||||
{
|
||||
checkID -= 1; /* Set a different unique ID for each search. */
|
||||
|
||||
if (numTrees > 1) {
|
||||
fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search");
|
||||
}
|
||||
if (numTrees>0) {
|
||||
searchLevelExact(result, vec, trees[0], 0.0);
|
||||
}
|
||||
assert(result.full());
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the approximate nearest-neighbor search. The search is approximate
|
||||
* because the tree traversal is abandoned after a given number of descends in
|
||||
* the tree.
|
||||
*/
|
||||
void getNeighbors(ResultSet& result, const float* vec, int maxCheck)
|
||||
{
|
||||
int i;
|
||||
BranchSt branch;
|
||||
|
||||
int checkCount = 0;
|
||||
heap->clear();
|
||||
checkID -= 1; /* Set a different unique ID for each search. */
|
||||
|
||||
/* Search once through each tree down to root. */
|
||||
for (i = 0; i < numTrees; ++i) {
|
||||
searchLevel(result, vec, trees[i], 0.0, checkCount, maxCheck);
|
||||
}
|
||||
|
||||
/* Keep searching other branches from heap until finished. */
|
||||
while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) {
|
||||
searchLevel(result, vec, branch.node,branch.mindistsq, checkCount, maxCheck);
|
||||
}
|
||||
|
||||
assert(result.full());
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Search starting from a given node of the tree. Based on any mismatches at
|
||||
* higher levels, all exemplars below this level must have a distance of
|
||||
* at least "mindistsq".
|
||||
*/
|
||||
void searchLevel(ResultSet& result, const float* vec, Tree node, float mindistsq, int& checkCount, int maxCheck)
|
||||
{
|
||||
if (result.worstDist()<mindistsq) {
|
||||
// printf("Ignoring branch, too far\n");
|
||||
return;
|
||||
}
|
||||
|
||||
float val, diff;
|
||||
Tree bestChild, otherChild;
|
||||
|
||||
/* If this is a leaf node, then do check and return. */
|
||||
if (node->child1 == NULL && node->child2 == NULL) {
|
||||
|
||||
/* Do not check same node more than once when searching multiple trees.
|
||||
Once a vector is checked, we set its location in vind to the
|
||||
current checkID.
|
||||
*/
|
||||
if (vind[node->divfeat] == checkID || checkCount>=maxCheck) {
|
||||
if (result.full()) return;
|
||||
}
|
||||
checkCount++;
|
||||
vind[node->divfeat] = checkID;
|
||||
|
||||
result.addPoint(dataset[node->divfeat],node->divfeat);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Which child branch should be taken first? */
|
||||
val = vec[node->divfeat];
|
||||
diff = val - node->divval;
|
||||
bestChild = (diff < 0) ? node->child1 : node->child2;
|
||||
otherChild = (diff < 0) ? node->child2 : node->child1;
|
||||
|
||||
/* Create a branch record for the branch not taken. Add distance
|
||||
of this feature boundary (we don't attempt to correct for any
|
||||
use of this feature in a parent node, which is unlikely to
|
||||
happen and would have only a small effect). Don't bother
|
||||
adding more branches to heap after halfway point, as cost of
|
||||
adding exceeds their value.
|
||||
*/
|
||||
|
||||
float new_distsq = flann_dist(&val, &val+1, &node->divval, mindistsq);
|
||||
// if (2 * checkCount < maxCheck || !result.full()) {
|
||||
if (new_distsq < result.worstDist() || !result.full()) {
|
||||
heap->insert( BranchSt::make_branch(otherChild, new_distsq) );
|
||||
}
|
||||
|
||||
/* Call recursively to search next level down. */
|
||||
searchLevel(result, vec, bestChild, mindistsq, checkCount, maxCheck);
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs an exact search in the tree starting from a node.
|
||||
*/
|
||||
void searchLevelExact(ResultSet& result, const float* vec, Tree node, float mindistsq)
|
||||
{
|
||||
if (mindistsq>result.worstDist()) {
|
||||
return;
|
||||
}
|
||||
|
||||
float val, diff;
|
||||
Tree bestChild, otherChild;
|
||||
|
||||
/* If this is a leaf node, then do check and return. */
|
||||
if (node->child1 == NULL && node->child2 == NULL) {
|
||||
|
||||
/* Do not check same node more than once when searching multiple trees.
|
||||
Once a vector is checked, we set its location in vind to the
|
||||
current checkID.
|
||||
*/
|
||||
if (vind[node->divfeat] == checkID)
|
||||
return;
|
||||
vind[node->divfeat] = checkID;
|
||||
|
||||
result.addPoint(dataset[node->divfeat],node->divfeat);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Which child branch should be taken first? */
|
||||
val = vec[node->divfeat];
|
||||
diff = val - node->divval;
|
||||
bestChild = (diff < 0) ? node->child1 : node->child2;
|
||||
otherChild = (diff < 0) ? node->child2 : node->child1;
|
||||
|
||||
|
||||
/* Call recursively to search next level down. */
|
||||
searchLevelExact(result, vec, bestChild, mindistsq);
|
||||
float new_distsq = flann_dist(&val, &val+1, &node->divval, mindistsq);
|
||||
searchLevelExact(result, vec, otherChild, new_distsq);
|
||||
}
|
||||
|
||||
}; // class KDTree
|
||||
|
||||
}
|
||||
|
||||
#endif //KDTREE_H
|
Reference in New Issue
Block a user