spelling corrections, added aero images as a more impressive example for
ASIFT
This commit is contained in:
parent
88a9f8f919
commit
0f9bbf85e5
@ -3,8 +3,8 @@ Affine invariant feature-based image matching sample.
|
||||
|
||||
This sample is similar to find_obj.py, but uses the affine transformation
|
||||
space sampling technique, called ASIFT [1]. While the original implementation
|
||||
is based on SIFT, can try to use SURF or ORB detectors instead. Homography RANSAC
|
||||
is used to reject outliers. Threaing is used for faster affine sampling.
|
||||
is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
|
||||
is used to reject outliers. Threading is used for faster affine sampling.
|
||||
|
||||
[1] http://www.ipol.im/pub/algo/my_affine_sift/
|
||||
|
||||
@ -101,11 +101,11 @@ if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
|
||||
opts = dict(opts)
|
||||
feature_name = opts.get('--feature', 'sift')
|
||||
feature_name = opts.get('--feature', 'sift-flann')
|
||||
try: fn1, fn2 = args
|
||||
except:
|
||||
fn1 = 'data/t4_0deg.png'
|
||||
fn2 = 'data/t4_60deg.png'
|
||||
fn1 = 'data/aero1.jpg'
|
||||
fn2 = 'data/aero3.jpg'
|
||||
|
||||
img1 = cv2.imread(fn1, 0)
|
||||
img2 = cv2.imread(fn2, 0)
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 125 KiB |
Binary file not shown.
Before Width: | Height: | Size: 129 KiB |
@ -118,6 +118,7 @@ def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
|
||||
|
||||
cv2.imshow(win, cur_vis)
|
||||
cv2.setMouseCallback(win, onmouse)
|
||||
return vis
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
Reference in New Issue
Block a user