fixed warnings in gbt; added insertChannel() and extractChannel(); made the code "rand{u|n}(arr, <number>, <number>)" work properly.
This commit is contained in:
parent
c37e063914
commit
0e14fef96e
@ -1961,7 +1961,7 @@ CV_EXPORTS Mat cvarrToMat(const CvArr* arr, bool copyData=false,
|
||||
CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1);
|
||||
//! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage
|
||||
CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1);
|
||||
|
||||
|
||||
//! adds one matrix to another (dst = src1 + src2)
|
||||
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst,
|
||||
InputArray mask=noArray(), int dtype=-1);
|
||||
@ -2039,6 +2039,12 @@ CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts
|
||||
CV_EXPORTS void mixChannels(const vector<Mat>& src, vector<Mat>& dst,
|
||||
const int* fromTo, size_t npairs);
|
||||
|
||||
//! extracts a single channel from src (coi is 0-based index)
|
||||
CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi);
|
||||
|
||||
//! inserts a single channel to dst (coi is 0-based index)
|
||||
CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi);
|
||||
|
||||
//! reverses the order of the rows, columns or both in a matrix
|
||||
CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode);
|
||||
|
||||
|
@ -501,7 +501,26 @@ void cv::mixChannels(const vector<Mat>& src, vector<Mat>& dst,
|
||||
{
|
||||
mixChannels(!src.empty() ? &src[0] : 0, src.size(),
|
||||
!dst.empty() ? &dst[0] : 0, dst.size(), fromTo, npairs);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi)
|
||||
{
|
||||
Mat src = _src.getMat();
|
||||
CV_Assert( 0 <= coi && coi < src.channels() );
|
||||
_dst.create(src.dims, &src.size[0], src.depth());
|
||||
Mat dst = _dst.getMat();
|
||||
int ch[] = { coi, 0 };
|
||||
mixChannels(&src, 1, &dst, 1, ch, 1);
|
||||
}
|
||||
|
||||
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi)
|
||||
{
|
||||
Mat src = _src.getMat(), dst = _dst.getMat();
|
||||
CV_Assert( src.size == dst.size && src.depth() == dst.depth() );
|
||||
CV_Assert( 0 <= coi && coi < dst.channels() && src.channels() == 1 );
|
||||
int ch[] = { 0, coi };
|
||||
mixChannels(&src, 1, &dst, 1, ch, 1);
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
* convertScale[Abs] *
|
||||
|
@ -453,11 +453,11 @@ void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, Inpu
|
||||
RandnScaleFunc scaleFunc = 0;
|
||||
|
||||
CV_Assert(_param1.channels() == 1 && (_param1.rows == 1 || _param1.cols == 1) &&
|
||||
(_param1.rows + _param1.cols - 1 == cn ||
|
||||
(_param1.rows + _param1.cols - 1 == cn || _param1.rows + _param1.cols - 1 == 1 ||
|
||||
(_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4)));
|
||||
CV_Assert( _param2.channels() == 1 &&
|
||||
(((_param2.rows == 1 || _param2.cols == 1) &&
|
||||
(_param2.rows + _param2.cols - 1 == cn ||
|
||||
(_param2.rows + _param2.cols - 1 == cn || _param2.rows + _param2.cols - 1 == 1 ||
|
||||
(_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4))) ||
|
||||
(_param2.rows == cn && _param2.cols == cn && disttype == NORMAL)));
|
||||
|
||||
@ -468,26 +468,34 @@ void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, Inpu
|
||||
uchar* mean = 0;
|
||||
uchar* stddev = 0;
|
||||
bool stdmtx = false;
|
||||
int n1 = (int)_param1.total();
|
||||
int n2 = (int)_param2.total();
|
||||
|
||||
if( disttype == UNIFORM )
|
||||
{
|
||||
_parambuf.allocate(cn*8);
|
||||
_parambuf.allocate(cn*8 + n1 + n2);
|
||||
double* parambuf = _parambuf;
|
||||
const double* p1 = (const double*)_param1.data;
|
||||
const double* p2 = (const double*)_param2.data;
|
||||
double* p1 = (double*)_param1.data;
|
||||
double* p2 = (double*)_param2.data;
|
||||
|
||||
if( !_param1.isContinuous() || _param1.type() != CV_64F )
|
||||
if( !_param1.isContinuous() || _param1.type() != CV_64F || n1 != cn )
|
||||
{
|
||||
Mat tmp(_param1.size(), CV_64F, parambuf);
|
||||
_param1.convertTo(tmp, CV_64F);
|
||||
p1 = parambuf;
|
||||
if( n1 < cn )
|
||||
for( j = n1; j < cn; j++ )
|
||||
p1[j] = p1[j-n1];
|
||||
}
|
||||
|
||||
if( !_param2.isContinuous() || _param2.type() != CV_64F )
|
||||
if( !_param2.isContinuous() || _param2.type() != CV_64F || n2 != cn )
|
||||
{
|
||||
Mat tmp(_param2.size(), CV_64F, parambuf + cn);
|
||||
_param2.convertTo(tmp, CV_64F);
|
||||
p2 = parambuf + cn;
|
||||
if( n2 < cn )
|
||||
for( j = n2; j < cn; j++ )
|
||||
p2[j] = p2[j-n2];
|
||||
}
|
||||
|
||||
if( depth <= CV_32S )
|
||||
@ -559,10 +567,12 @@ void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, Inpu
|
||||
}
|
||||
else if( disttype == CV_RAND_NORMAL )
|
||||
{
|
||||
_parambuf.allocate(_param1.total() + _param2.total());
|
||||
_parambuf.allocate(MAX(n1, cn) + MAX(n2, cn));
|
||||
double* parambuf = _parambuf;
|
||||
|
||||
int ptype = depth == CV_64F ? CV_64F : CV_32F;
|
||||
int esz = (int)CV_ELEM_SIZE(ptype);
|
||||
|
||||
if( _param1.isContinuous() && _param1.type() == ptype )
|
||||
mean = _param1.data;
|
||||
else
|
||||
@ -572,6 +582,10 @@ void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, Inpu
|
||||
mean = (uchar*)parambuf;
|
||||
}
|
||||
|
||||
if( n1 < cn )
|
||||
for( j = n1*esz; j < cn*esz; j++ )
|
||||
mean[j] = mean[j - n1*esz];
|
||||
|
||||
if( _param2.isContinuous() && _param2.type() == ptype )
|
||||
stddev = _param2.data;
|
||||
else
|
||||
@ -581,6 +595,10 @@ void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, Inpu
|
||||
stddev = (uchar*)(parambuf + cn);
|
||||
}
|
||||
|
||||
if( n1 < cn )
|
||||
for( j = n1*esz; j < cn*esz; j++ )
|
||||
stddev[j] = stddev[j - n1*esz];
|
||||
|
||||
stdmtx = _param2.rows == cn && _param2.cols == cn;
|
||||
scaleFunc = randnScaleTab[depth];
|
||||
CV_Assert( scaleFunc != 0 );
|
||||
|
@ -919,17 +919,17 @@ public:
|
||||
Tree_predictor() : weak(0), sum(0), k(0), sample(0), missing(0), shrinkage(1.0f) {}
|
||||
Tree_predictor(pCvSeq* _weak, const int _k, const float _shrinkage,
|
||||
const CvMat* _sample, const CvMat* _missing, float* _sum ) :
|
||||
weak(_weak), k(_k), sample(_sample),
|
||||
missing(_missing), sum(_sum), shrinkage(_shrinkage)
|
||||
weak(_weak), sum(_sum), k(_k), sample(_sample),
|
||||
missing(_missing), shrinkage(_shrinkage)
|
||||
{}
|
||||
|
||||
Tree_predictor( const Tree_predictor& p, cv::Split ) :
|
||||
weak(p.weak), k(p.k), sample(p.sample),
|
||||
missing(p.missing), sum(p.sum), shrinkage(p.shrinkage)
|
||||
weak(p.weak), sum(p.sum), k(p.k), sample(p.sample),
|
||||
missing(p.missing), shrinkage(p.shrinkage)
|
||||
{}
|
||||
|
||||
Tree_predictor& operator=( const Tree_predictor& )
|
||||
{}
|
||||
{ return *this; }
|
||||
|
||||
virtual void operator()(const cv::BlockedRange& range) const
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user