Return uncompressed support vectors for getSupportVectors on linear SVM (Bug #4096)

This commit is contained in:
Deanna Hood
2015-04-18 21:32:29 -04:00
committed by Vadim Pisarevsky
parent 544990e377
commit 0d706f6796
4 changed files with 109 additions and 5 deletions

View File

@@ -1241,6 +1241,12 @@ public:
df_alpha.clear();
df_index.clear();
sv.release();
uncompressed_sv.release();
}
Mat getUncompressedSupportVectors_() const
{
return uncompressed_sv;
}
Mat getSupportVectors() const
@@ -1538,6 +1544,7 @@ public:
}
optimize_linear_svm();
return true;
}
@@ -1588,6 +1595,7 @@ public:
setRangeVector(df_index, df_count);
df_alpha.assign(df_count, 1.);
sv.copyTo(uncompressed_sv);
std::swap(sv, new_sv);
std::swap(decision_func, new_df);
}
@@ -2056,6 +2064,21 @@ public:
}
fs << "]";
if ( !uncompressed_sv.empty() )
{
// write the joint collection of uncompressed support vectors
int uncompressed_sv_total = uncompressed_sv.rows;
fs << "uncompressed_sv_total" << uncompressed_sv_total;
fs << "uncompressed_support_vectors" << "[";
for( i = 0; i < uncompressed_sv_total; i++ )
{
fs << "[:";
fs.writeRaw("f", uncompressed_sv.ptr(i), uncompressed_sv.cols*uncompressed_sv.elemSize());
fs << "]";
}
fs << "]";
}
// write decision functions
int df_count = (int)decision_func.size();
@@ -2096,7 +2119,7 @@ public:
svm_type_str == "NU_SVR" ? NU_SVR : -1;
if( svmType < 0 )
CV_Error( CV_StsParseError, "Missing of invalid SVM type" );
CV_Error( CV_StsParseError, "Missing or invalid SVM type" );
FileNode kernel_node = fn["kernel"];
if( kernel_node.empty() )
@@ -2168,14 +2191,31 @@ public:
FileNode sv_node = fn["support_vectors"];
CV_Assert((int)sv_node.size() == sv_total);
sv.create(sv_total, var_count, CV_32F);
sv.create(sv_total, var_count, CV_32F);
FileNodeIterator sv_it = sv_node.begin();
for( i = 0; i < sv_total; i++, ++sv_it )
{
(*sv_it).readRaw("f", sv.ptr(i), var_count*sv.elemSize());
}
int uncompressed_sv_total = (int)fn["uncompressed_sv_total"];
if( uncompressed_sv_total > 0 )
{
// read uncompressed support vectors
FileNode uncompressed_sv_node = fn["uncompressed_support_vectors"];
CV_Assert((int)uncompressed_sv_node.size() == uncompressed_sv_total);
uncompressed_sv.create(uncompressed_sv_total, var_count, CV_32F);
FileNodeIterator uncompressed_sv_it = uncompressed_sv_node.begin();
for( i = 0; i < uncompressed_sv_total; i++, ++uncompressed_sv_it )
{
(*uncompressed_sv_it).readRaw("f", uncompressed_sv.ptr(i), var_count*uncompressed_sv.elemSize());
}
}
// read decision functions
int df_count = class_count > 1 ? class_count*(class_count-1)/2 : 1;
FileNode df_node = fn["decision_functions"];
@@ -2207,7 +2247,7 @@ public:
SvmParams params;
Mat class_labels;
int var_count;
Mat sv;
Mat sv, uncompressed_sv;
vector<DecisionFunc> decision_func;
vector<double> df_alpha;
vector<int> df_index;
@@ -2221,6 +2261,14 @@ Ptr<SVM> SVM::create()
return makePtr<SVMImpl>();
}
Mat SVM::getUncompressedSupportVectors() const
{
const SVMImpl* this_ = dynamic_cast<const SVMImpl*>(this);
if(!this_)
CV_Error(Error::StsNotImplemented, "the class is not SVMImpl");
return this_->getUncompressedSupportVectors_();
}
}
}