added tests to check rotation invariance of descriptors (features2d and nonfree)

This commit is contained in:
Maria Dimashova 2012-07-14 20:03:07 +00:00
parent 92e6aa5f17
commit 0c6480d89b
2 changed files with 444 additions and 122 deletions

View File

@ -48,9 +48,12 @@ using namespace cv;
const string FEATURES2D_DIR = "features2d"; const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png"; const string IMAGE_FILENAME = "tsukuba.png";
#define SHOW_DEBUG_LOG 0
static static
Mat generateHomography(float angle) Mat generateHomography(float angle)
{ {
// angle - rotation around Oz in degrees
float angleRadian = angle * CV_PI / 180.; float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1); Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian); H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
@ -63,6 +66,7 @@ Mat generateHomography(float angle)
static static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask) Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{ {
// angle - rotation around Oz in degrees
float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows)); float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2; LUShift.at<float>(0,2) = -srcImage.cols/2;
@ -82,7 +86,7 @@ Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
} }
static static
float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1) float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{ {
float c = norm(p0 - p1), sqr_c = c * c; float c = norm(p0 - p1), sqr_c = c * c;
@ -110,18 +114,58 @@ float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1
static static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1) float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{ {
float intersectArea = calcIntersectArea(p0, r0, p1, r1); float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1);
float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea; float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea;
return intersectArea / unionArea; return intersectArea / unionArea;
} }
static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
{
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = -1.f;
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
keypoints1[i1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
}
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
}
class DetectorRotatationInvarianceTest : public cvtest::BaseTest class DetectorRotatationInvarianceTest : public cvtest::BaseTest
{ {
public: public:
DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector, DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minInliersRatio, float _minKeyPointMatchesRatio,
float _minAngleInliersRatio) : float _minAngleInliersRatio) :
featureDetector(_featureDetector), minInliersRatio(_minInliersRatio), minAngleInliersRatio(_minAngleInliersRatio) featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
{ {
CV_Assert(!featureDetector.empty()); CV_Assert(!featureDetector.empty());
} }
@ -134,7 +178,6 @@ protected:
// Read test data // Read test data
Mat image0 = imread(imageFilename), image1, mask1; Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty()) if(image0.empty())
{ {
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
@ -147,7 +190,7 @@ protected:
CV_Assert(keypoints0.size() > 15); CV_Assert(keypoints0.size() > 15);
const int maxAngle = 360, angleStep = 10; const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep) for(int angle = 0; angle < maxAngle; angle += angleStep)
{ {
Mat H = rotateImage(image0, angle, image1, mask1); Mat H = rotateImage(image0, angle, image1, mask1);
@ -155,71 +198,53 @@ protected:
vector<KeyPoint> keypoints1; vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1); featureDetector->detect(image1, keypoints1, mask1);
vector<Point2f> points0; vector<DMatch> matches;
KeyPoint::convert(keypoints0, points0); matchKeyPoints(keypoints0, H, keypoints1, matches);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
int inliersCount = 0;
int angleInliersCount = 0; int angleInliersCount = 0;
for(size_t m0 = 0; m0 < points0t.total(); m0++) const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{ {
int nearestPointIndex = -1; if(matches[m].distance < minIntersectRatio)
float maxIntersectRatio = 0.f; continue;
const float r0 = 0.5f * keypoints0[m0].size;
for(size_t m1 = 0; m1 < keypoints1.size(); m1++) keyPointMatchesCount++;
{
float r1 = 0.5f * keypoints1[m1].size; // Check does this inlier have consistent angles
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(m0), r0, const float maxAngleDiff = 15.f; // grad
keypoints1[m1].pt, r1); float angle0 = keypoints0[matches[m].queryIdx].angle;
if(intersectRatio > maxIntersectRatio) float angle1 = keypoints1[matches[m].trainIdx].angle;
{ if(angle0 == -1 || angle1 == -1)
maxIntersectRatio = intersectRatio; CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
nearestPointIndex = m1; CV_Assert(angle0 >= 0.f && angle0 < 360.f);
} CV_Assert(angle1 >= 0.f && angle1 < 360.f);
}
if(maxIntersectRatio > 0.5f) float rotAngle0 = angle0 + angle;
{ if(rotAngle0 >= 360.f)
inliersCount++; rotAngle0 -= 360.f;
const float maxAngleDiff = 15.f; // grad float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
float angle0 = keypoints0[m0].angle; CV_Assert(angleDiff >= 0.f);
float angle1 = keypoints1[nearestPointIndex].angle; bool isAngleCorrect = angleDiff < maxAngleDiff;
if(angle0 == -1 || angle1 == -1) if(isAngleCorrect)
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n"); angleInliersCount++;
CV_Assert(angle0 >= 0.f && angle0 < 360.f);
CV_Assert(angle1 >= 0.f && angle1 < 360.f);
float rotAngle0 = angle0 + angle;
if(rotAngle0 >= 360.f)
rotAngle0 -= 360.f;
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
CV_Assert(angleDiff >= 0.f);
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
} }
float inliersRatio = static_cast<float>(inliersCount) / keypoints0.size(); float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(inliersRatio < minInliersRatio) if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{ {
ts->printf(cvtest::TS::LOG, "Incorrect inliersRatio: curr = %f, min = %f.\n", ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
inliersRatio, minInliersRatio); keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return; return;
} }
if(inliersCount) if(keyPointMatchesCount)
{ {
float angleInliersRatio = static_cast<float>(angleInliersCount) / inliersCount; float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
if(angleInliersRatio < minAngleInliersRatio) if(angleInliersRatio < minAngleInliersRatio)
{ {
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n", ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
@ -228,22 +253,157 @@ protected:
return; return;
} }
} }
#if SHOW_DEBUG_LOG
// std::cout << "inliersRatio - " << inliersRatio std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
// << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / inliersCount << std::endl; << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
} }
ts->set_failed_test_info( cvtest::TS::OK ); ts->set_failed_test_info( cvtest::TS::OK );
} }
Ptr<FeatureDetector> featureDetector; Ptr<FeatureDetector> featureDetector;
float minInliersRatio; float minKeyPointMatchesRatio;
float minAngleInliersRatio; float minAngleInliersRatio;
}; };
class DescriptorRotatationInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
vector<KeyPoint> keypoints0;
Mat descriptors0;
featureDetector->detect(image0, keypoints0);
descriptorExtractor->compute(image0, keypoints0, descriptors0);
CV_Assert(keypoints0.size() > 15);
BFMatcher bfmatcher(normType);
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
Mat descriptors1;
featureDetector->detect(image1, keypoints1, mask1);
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
vector<DMatch> keyPointMatches;
matchKeyPoints(keypoints0, H, keypoints1, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
if(keyPointMatchesCount)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
};
// Tests registration // Tests registration
// Detector's rotation invariance check
TEST(Features2d_RotationInvariance_Detector_ORB, regression) TEST(Features2d_RotationInvariance_Detector_ORB, regression)
{ {
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"), 0.90, 0.83); DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
0.45f,
0.75f);
test.safe_run(); test.safe_run();
} }
// Descriptors's rotation invariance check
TEST(Features2d_RotationInvariance_Descriptor_ORB, regression)
{
DescriptorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
Algorithm::create<DescriptorExtractor>("Feature2D.ORB"),
NORM_HAMMING,
0.45f,
0.53f);
test.safe_run();
}
// TODO: uncomment test for FREAK when it will work
//TEST(Features2d_RotationInvariance_Descriptor_FREAK, regression)
//{
// DescriptorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.ORB"),
// Algorithm::create<DescriptorExtractor>("Feature2D.FREAK"),
// NORM_HAMMING(?),
// 0.45f,
// 0.?f);
// test.safe_run();
//}

View File

@ -48,9 +48,12 @@ using namespace cv;
const string FEATURES2D_DIR = "features2d"; const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png"; const string IMAGE_FILENAME = "tsukuba.png";
#define SHOW_DEBUG_LOG 0
static static
Mat generateHomography(float angle) Mat generateHomography(float angle)
{ {
// angle - rotation around Oz in degrees
float angleRadian = angle * CV_PI / 180.; float angleRadian = angle * CV_PI / 180.;
Mat H = Mat::eye(3, 3, CV_32FC1); Mat H = Mat::eye(3, 3, CV_32FC1);
H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian); H.at<float>(0,0) = H.at<float>(1,1) = std::cos(angleRadian);
@ -63,6 +66,7 @@ Mat generateHomography(float angle)
static static
Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask) Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
{ {
// angle - rotation around Oz in degrees
float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows)); float diag = std::sqrt(static_cast<float>(srcImage.cols * srcImage.cols + srcImage.rows * srcImage.rows));
Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up Mat LUShift = Mat::eye(3, 3, CV_32FC1); // left up
LUShift.at<float>(0,2) = -srcImage.cols/2; LUShift.at<float>(0,2) = -srcImage.cols/2;
@ -82,7 +86,7 @@ Mat rotateImage(const Mat& srcImage, float angle, Mat& dstImage, Mat& dstMask)
} }
static static
float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1) float calcCirclesIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1)
{ {
float c = norm(p0 - p1), sqr_c = c * c; float c = norm(p0 - p1), sqr_c = c * c;
@ -110,18 +114,58 @@ float calcIntersectArea(const Point2f& p0, float r0, const Point2f& p1, float r1
static static
float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1) float calcIntersectRatio(const Point2f& p0, float r0, const Point2f& p1, float r1)
{ {
float intersectArea = calcIntersectArea(p0, r0, p1, r1); float intersectArea = calcCirclesIntersectArea(p0, r0, p1, r1);
float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea; float unionArea = CV_PI * (r0 * r0 + r1 * r1) - intersectArea;
return intersectArea / unionArea; return intersectArea / unionArea;
} }
static
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const vector<KeyPoint>& keypoints1,
vector<DMatch>& matches)
{
vector<Point2f> points0;
KeyPoint::convert(keypoints0, points0);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(size_t i0 = 0; i0 < keypoints0.size(); i0++)
{
int nearestPointIndex = -1;
float maxIntersectRatio = -1.f;
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
keypoints1[i1].pt, r1);
if(intersectRatio > maxIntersectRatio)
{
maxIntersectRatio = intersectRatio;
nearestPointIndex = i1;
}
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
}
class DetectorRotatationInvarianceTest : public cvtest::BaseTest class DetectorRotatationInvarianceTest : public cvtest::BaseTest
{ {
public: public:
DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector, DetectorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
float _minInliersRatio, float _minKeyPointMatchesRatio,
float _minAngleInliersRatio) : float _minAngleInliersRatio) :
featureDetector(_featureDetector), minInliersRatio(_minInliersRatio), minAngleInliersRatio(_minAngleInliersRatio) featureDetector(_featureDetector),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minAngleInliersRatio(_minAngleInliersRatio)
{ {
CV_Assert(!featureDetector.empty()); CV_Assert(!featureDetector.empty());
} }
@ -134,7 +178,6 @@ protected:
// Read test data // Read test data
Mat image0 = imread(imageFilename), image1, mask1; Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty()) if(image0.empty())
{ {
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str()); ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
@ -147,7 +190,7 @@ protected:
CV_Assert(keypoints0.size() > 15); CV_Assert(keypoints0.size() > 15);
const int maxAngle = 360, angleStep = 10; const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep) for(int angle = 0; angle < maxAngle; angle += angleStep)
{ {
Mat H = rotateImage(image0, angle, image1, mask1); Mat H = rotateImage(image0, angle, image1, mask1);
@ -155,70 +198,53 @@ protected:
vector<KeyPoint> keypoints1; vector<KeyPoint> keypoints1;
featureDetector->detect(image1, keypoints1, mask1); featureDetector->detect(image1, keypoints1, mask1);
vector<Point2f> points0; vector<DMatch> matches;
KeyPoint::convert(keypoints0, points0); matchKeyPoints(keypoints0, H, keypoints1, matches);
Mat points0t;
perspectiveTransform(Mat(points0), points0t, H);
int inliersCount = 0;
int angleInliersCount = 0; int angleInliersCount = 0;
for(size_t m0 = 0; m0 < points0t.total(); m0++) const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < matches.size(); m++)
{ {
int nearestPointIndex = -1; if(matches[m].distance < minIntersectRatio)
float maxIntersectRatio = 0.f; continue;
const float r0 = 0.5f * keypoints0[m0].size;
for(size_t m1 = 0; m1 < keypoints1.size(); m1++) keyPointMatchesCount++;
{
float r1 = 0.5f * keypoints1[m1].size; // Check does this inlier have consistent angles
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(m0), r0, const float maxAngleDiff = 15.f; // grad
keypoints1[m1].pt, r1); float angle0 = keypoints0[matches[m].queryIdx].angle;
if(intersectRatio > maxIntersectRatio) float angle1 = keypoints1[matches[m].trainIdx].angle;
{ if(angle0 == -1 || angle1 == -1)
maxIntersectRatio = intersectRatio; CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n");
nearestPointIndex = m1; CV_Assert(angle0 >= 0.f && angle0 < 360.f);
} CV_Assert(angle1 >= 0.f && angle1 < 360.f);
}
if(maxIntersectRatio > 0.5f) float rotAngle0 = angle0 + angle;
{ if(rotAngle0 >= 360.f)
inliersCount++; rotAngle0 -= 360.f;
const float maxAngleDiff = 15.f; // grad float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
float angle0 = keypoints0[m0].angle; angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
float angle1 = keypoints1[nearestPointIndex].angle; CV_Assert(angleDiff >= 0.f);
if(angle0 == -1 || angle1 == -1) bool isAngleCorrect = angleDiff < maxAngleDiff;
CV_Error(CV_StsBadArg, "Given FeatureDetector is not rotation invariant, it can not be tested here.\n"); if(isAngleCorrect)
CV_Assert(angle0 >= 0.f && angle0 < 360.f); angleInliersCount++;
CV_Assert(angle1 >= 0.f && angle1 < 360.f);
float rotAngle0 = angle0 + angle;
if(rotAngle0 >= 360.f)
rotAngle0 -= 360.f;
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
CV_Assert(angleDiff >= 0.f);
bool isAngleCorrect = angleDiff < maxAngleDiff;
if(isAngleCorrect)
angleInliersCount++;
}
} }
float inliersRatio = static_cast<float>(inliersCount) / keypoints0.size(); float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(inliersRatio < minInliersRatio) if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{ {
ts->printf(cvtest::TS::LOG, "Incorrect inliersRatio: curr = %f, min = %f.\n", ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
inliersRatio, minInliersRatio); keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY); ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return; return;
} }
if(inliersCount) if(keyPointMatchesCount)
{ {
float angleInliersRatio = static_cast<float>(angleInliersCount) / inliersCount; float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
if(angleInliersRatio < minAngleInliersRatio) if(angleInliersRatio < minAngleInliersRatio)
{ {
ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n", ts->printf(cvtest::TS::LOG, "Incorrect angleInliersRatio: curr = %f, min = %f.\n",
@ -227,29 +253,165 @@ protected:
return; return;
} }
} }
#if SHOW_DEBUG_LOG
// std::cout << "inliersRatio - " << inliersRatio std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
// << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / inliersCount << std::endl; << " - angleInliersRatio " << static_cast<float>(angleInliersCount) / keyPointMatchesCount << std::endl;
#endif
} }
ts->set_failed_test_info( cvtest::TS::OK ); ts->set_failed_test_info( cvtest::TS::OK );
} }
Ptr<FeatureDetector> featureDetector; Ptr<FeatureDetector> featureDetector;
float minInliersRatio; float minKeyPointMatchesRatio;
float minAngleInliersRatio; float minAngleInliersRatio;
}; };
class DescriptorRotatationInvarianceTest : public cvtest::BaseTest
{
public:
DescriptorRotatationInvarianceTest(const Ptr<FeatureDetector>& _featureDetector,
const Ptr<DescriptorExtractor>& _descriptorExtractor,
int _normType,
float _minKeyPointMatchesRatio,
float _minDescInliersRatio) :
featureDetector(_featureDetector),
descriptorExtractor(_descriptorExtractor),
normType(_normType),
minKeyPointMatchesRatio(_minKeyPointMatchesRatio),
minDescInliersRatio(_minDescInliersRatio)
{
CV_Assert(!featureDetector.empty());
CV_Assert(!descriptorExtractor.empty());
}
protected:
void run(int)
{
const string imageFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
// Read test data
Mat image0 = imread(imageFilename), image1, mask1;
if(image0.empty())
{
ts->printf(cvtest::TS::LOG, "Image %s can not be read.\n", imageFilename.c_str());
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
return;
}
vector<KeyPoint> keypoints0;
Mat descriptors0;
featureDetector->detect(image0, keypoints0);
descriptorExtractor->compute(image0, keypoints0, descriptors0);
CV_Assert(keypoints0.size() > 15);
BFMatcher bfmatcher(normType);
const int maxAngle = 360, angleStep = 15;
for(int angle = 0; angle < maxAngle; angle += angleStep)
{
Mat H = rotateImage(image0, angle, image1, mask1);
vector<KeyPoint> keypoints1;
Mat descriptors1;
featureDetector->detect(image1, keypoints1, mask1);
descriptorExtractor->compute(image1, keypoints1, descriptors1);
vector<DMatch> descMatches;
bfmatcher.match(descriptors0, descriptors1, descMatches);
vector<DMatch> keyPointMatches;
matchKeyPoints(keypoints0, H, keypoints1, keyPointMatches);
const float minIntersectRatio = 0.5f;
int keyPointMatchesCount = 0;
for(size_t m = 0; m < keyPointMatches.size(); m++)
{
if(keyPointMatches[m].distance >= minIntersectRatio)
keyPointMatchesCount++;
}
int descInliersCount = 0;
for(size_t m = 0; m < descMatches.size(); m++)
{
int queryIdx = descMatches[m].queryIdx;
if(keyPointMatches[queryIdx].distance >= minIntersectRatio &&
descMatches[m].trainIdx == keyPointMatches[queryIdx].trainIdx)
descInliersCount++;
}
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
if(keyPointMatchesRatio < minKeyPointMatchesRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect keyPointMatchesRatio: curr = %f, min = %f.\n",
keyPointMatchesRatio, minKeyPointMatchesRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
if(keyPointMatchesCount)
{
float descInliersRatio = static_cast<float>(descInliersCount) / keyPointMatchesCount;
if(descInliersRatio < minDescInliersRatio)
{
ts->printf(cvtest::TS::LOG, "Incorrect descInliersRatio: curr = %f, min = %f.\n",
descInliersRatio, minDescInliersRatio);
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
return;
}
}
#if SHOW_DEBUG_LOG
std::cout << "keyPointMatchesRatio - " << keyPointMatchesRatio
<< " - descInliersRatio " << static_cast<float>(descInliersCount) / keyPointMatchesCount << std::endl;
#endif
}
ts->set_failed_test_info( cvtest::TS::OK );
}
Ptr<FeatureDetector> featureDetector;
Ptr<DescriptorExtractor> descriptorExtractor;
int normType;
float minKeyPointMatchesRatio;
float minDescInliersRatio;
};
// Tests registration // Tests registration
// Detector's rotation invariance check
TEST(Features2d_RotationInvariance_Detector_SURF, regression) TEST(Features2d_RotationInvariance_Detector_SURF, regression)
{ {
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"), 0.60f, 0.76f); DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
0.44f,
0.76f);
test.safe_run(); test.safe_run();
} }
TEST(Features2d_RotationInvariance_Detector_SIFT, regression) TEST(Features2d_RotationInvariance_Detector_SIFT, regression)
{ {
DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"), 0.76f, 0.76f); DetectorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
0.64f,
0.74f);
test.safe_run(); test.safe_run();
} }
// Descriptors's rotation invariance check
TEST(Features2d_RotationInvariance_Descriptor_SURF, regression)
{
DescriptorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SURF"),
Algorithm::create<DescriptorExtractor>("Feature2D.SURF"),
NORM_L1,
0.44f,
0.64f);
test.safe_run();
}
TEST(Features2d_RotationInvariance_Descriptor_SIFT, regression)
{
DescriptorRotatationInvarianceTest test(Algorithm::create<FeatureDetector>("Feature2D.SIFT"),
Algorithm::create<DescriptorExtractor>("Feature2D.SIFT"),
NORM_L1,
0.64f,
0.72f);
test.safe_run();
}