|
|
|
@@ -64,11 +64,15 @@ using cv::Mat;
|
|
|
|
|
cv::FeaturePool::~FeaturePool(){}
|
|
|
|
|
cv::Dataset::~Dataset(){}
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BoostedSoftCascadeOctave : public cv::Boost, public cv::SoftCascadeOctave
|
|
|
|
|
{
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
|
|
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0, int shrinkage = 1);
|
|
|
|
|
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0,
|
|
|
|
|
int shrinkage = 1, int poolSize = 0);
|
|
|
|
|
virtual ~BoostedSoftCascadeOctave();
|
|
|
|
|
virtual cv::AlgorithmInfo* info() const;
|
|
|
|
|
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
|
|
|
@@ -80,8 +84,8 @@ protected:
|
|
|
|
|
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
|
|
|
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
|
|
|
|
|
|
|
|
|
void processPositives(const Dataset* dataset, const FeaturePool* pool);
|
|
|
|
|
void generateNegatives(const Dataset* dataset, const FeaturePool* pool);
|
|
|
|
|
void processPositives(const Dataset* dataset);
|
|
|
|
|
void generateNegatives(const Dataset* dataset);
|
|
|
|
|
|
|
|
|
|
float predict( const Mat& _sample, const cv::Range range) const;
|
|
|
|
|
private:
|
|
|
|
@@ -102,9 +106,11 @@ private:
|
|
|
|
|
CvBoostParams params;
|
|
|
|
|
|
|
|
|
|
Mat trainData;
|
|
|
|
|
|
|
|
|
|
cv::Ptr<cv::ChannelFeatureBuilder> builder;
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr)
|
|
|
|
|
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr, int poolSize)
|
|
|
|
|
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
|
|
|
|
{
|
|
|
|
|
int maxSample = npositives + nnegatives;
|
|
|
|
@@ -132,6 +138,13 @@ BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
params = _params;
|
|
|
|
|
|
|
|
|
|
builder = cv::ChannelFeatureBuilder::create();
|
|
|
|
|
|
|
|
|
|
int w = boundingBox.width;
|
|
|
|
|
int h = boundingBox.height;
|
|
|
|
|
|
|
|
|
|
integrals.create(poolSize, (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
BoostedSoftCascadeOctave::~BoostedSoftCascadeOctave(){}
|
|
|
|
@@ -191,12 +204,11 @@ void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const FeaturePool* pool)
|
|
|
|
|
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
|
|
|
|
|
{
|
|
|
|
|
int w = boundingBox.width;
|
|
|
|
|
int h = boundingBox.height;
|
|
|
|
|
|
|
|
|
|
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
|
|
|
|
cv::ChannelFeatureBuilder& _builder = *builder;
|
|
|
|
|
|
|
|
|
|
int total = 0;
|
|
|
|
|
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
|
|
|
|
@@ -206,7 +218,7 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const Fe
|
|
|
|
|
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
|
|
|
|
sample = sample(boundingBox);
|
|
|
|
|
|
|
|
|
|
pool->preprocess(sample, channels);
|
|
|
|
|
_builder(sample, channels);
|
|
|
|
|
responses.ptr<float>(total)[0] = 1.f;
|
|
|
|
|
|
|
|
|
|
if (++total >= npositives) break;
|
|
|
|
@@ -238,7 +250,7 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const Fe
|
|
|
|
|
#undef USE_LONG_SEEDS
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
|
|
|
|
|
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
|
|
|
|
{
|
|
|
|
|
// ToDo: set seed, use offsets
|
|
|
|
|
sft::Random::engine eng(DX_DY_SEED);
|
|
|
|
@@ -251,6 +263,8 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const F
|
|
|
|
|
|
|
|
|
|
int total = 0;
|
|
|
|
|
Mat sum;
|
|
|
|
|
|
|
|
|
|
cv::ChannelFeatureBuilder& _builder = *builder;
|
|
|
|
|
for (int i = npositives; i < nnegatives + npositives; ++total)
|
|
|
|
|
{
|
|
|
|
|
int curr = iRand(idxEng);
|
|
|
|
@@ -269,7 +283,7 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const F
|
|
|
|
|
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
|
|
|
|
|
|
|
|
|
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
|
|
|
|
pool->preprocess(frame, channels);
|
|
|
|
|
_builder(frame, channels);
|
|
|
|
|
|
|
|
|
|
dprintf("generated %d %d\n", dx, dy);
|
|
|
|
|
// // if (predict(sum))
|
|
|
|
@@ -392,8 +406,8 @@ bool BoostedSoftCascadeOctave::train(const Dataset* dataset, const FeaturePool*
|
|
|
|
|
params.weak_count = weaks;
|
|
|
|
|
|
|
|
|
|
// 1. fill integrals and classes
|
|
|
|
|
processPositives(dataset, pool);
|
|
|
|
|
generateNegatives(dataset, pool);
|
|
|
|
|
processPositives(dataset);
|
|
|
|
|
generateNegatives(dataset);
|
|
|
|
|
|
|
|
|
|
// 2. only simple case (all features used)
|
|
|
|
|
int nfeatures = pool->size();
|
|
|
|
@@ -462,13 +476,16 @@ void BoostedSoftCascadeOctave::write( CvFileStorage* fs, std::string _name) cons
|
|
|
|
|
CvBoost::write(fs, _name.c_str());
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
|
|
|
|
|
|
|
|
|
|
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
|
|
|
|
|
|
|
|
|
|
cv::Ptr<cv::SoftCascadeOctave> cv::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
|
|
|
|
|
int logScale, int shrinkage)
|
|
|
|
|
int logScale, int shrinkage, int poolSize)
|
|
|
|
|
{
|
|
|
|
|
cv::Ptr<cv::SoftCascadeOctave> octave(new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage));
|
|
|
|
|
cv::Ptr<cv::SoftCascadeOctave> octave(
|
|
|
|
|
new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage, poolSize));
|
|
|
|
|
return octave;
|
|
|
|
|
}
|
|
|
|
|