refactor feature pool
This commit is contained in:
parent
b4aa33b6d3
commit
0b039f3c6b
@ -53,12 +53,6 @@ sft::ICFFeaturePool::ICFFeaturePool(cv::Size m, int n) : FeaturePool(), model(m)
|
|||||||
{
|
{
|
||||||
CV_Assert(m != cv::Size() && n > 0);
|
CV_Assert(m != cv::Size() && n > 0);
|
||||||
fill(nfeatures);
|
fill(nfeatures);
|
||||||
builder = cv::ChannelFeatureBuilder::create();
|
|
||||||
}
|
|
||||||
|
|
||||||
void sft::ICFFeaturePool::preprocess(cv::InputArray frame, cv::OutputArray integrals) const
|
|
||||||
{
|
|
||||||
(*builder)(frame, integrals);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float sft::ICFFeaturePool::apply(int fi, int si, const Mat& integrals) const
|
float sft::ICFFeaturePool::apply(int fi, int si, const Mat& integrals) const
|
||||||
|
@ -61,7 +61,6 @@ public:
|
|||||||
|
|
||||||
virtual int size() const { return (int)pool.size(); }
|
virtual int size() const { return (int)pool.size(); }
|
||||||
virtual float apply(int fi, int si, const cv::Mat& integrals) const;
|
virtual float apply(int fi, int si, const cv::Mat& integrals) const;
|
||||||
virtual void preprocess(cv::InputArray _frame, cv::OutputArray _integrals) const;
|
|
||||||
virtual void write( cv::FileStorage& fs, int index) const;
|
virtual void write( cv::FileStorage& fs, int index) const;
|
||||||
|
|
||||||
virtual ~ICFFeaturePool();
|
virtual ~ICFFeaturePool();
|
||||||
@ -77,8 +76,6 @@ private:
|
|||||||
|
|
||||||
static const unsigned int seed = 0;
|
static const unsigned int seed = 0;
|
||||||
|
|
||||||
cv::Ptr<cv::ChannelFeatureBuilder> builder;
|
|
||||||
|
|
||||||
enum { N_CHANNELS = 10 };
|
enum { N_CHANNELS = 10 };
|
||||||
};
|
};
|
||||||
|
|
||||||
|
@ -130,7 +130,7 @@ int main(int argc, char** argv)
|
|||||||
|
|
||||||
typedef cv::SoftCascadeOctave Octave;
|
typedef cv::SoftCascadeOctave Octave;
|
||||||
|
|
||||||
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage);
|
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
|
||||||
|
|
||||||
std::string path = cfg.trainPath;
|
std::string path = cfg.trainPath;
|
||||||
sft::ScaledDataset dataset(path, *it);
|
sft::ScaledDataset dataset(path, *it);
|
||||||
|
@ -71,9 +71,6 @@ public:
|
|||||||
virtual int size() const = 0;
|
virtual int size() const = 0;
|
||||||
virtual float apply(int fi, int si, const Mat& integrals) const = 0;
|
virtual float apply(int fi, int si, const Mat& integrals) const = 0;
|
||||||
virtual void write( cv::FileStorage& fs, int index) const = 0;
|
virtual void write( cv::FileStorage& fs, int index) const = 0;
|
||||||
|
|
||||||
virtual void preprocess(InputArray frame, OutputArray integrals) const = 0;
|
|
||||||
|
|
||||||
virtual ~FeaturePool();
|
virtual ~FeaturePool();
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -196,7 +193,7 @@ public:
|
|||||||
|
|
||||||
virtual ~SoftCascadeOctave();
|
virtual ~SoftCascadeOctave();
|
||||||
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives,
|
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||||
int logScale, int shrinkage);
|
int logScale, int shrinkage, int poolSize);
|
||||||
|
|
||||||
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
|
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
|
||||||
virtual void setRejectThresholds(OutputArray thresholds) = 0;
|
virtual void setRejectThresholds(OutputArray thresholds) = 0;
|
||||||
|
@ -64,11 +64,15 @@ using cv::Mat;
|
|||||||
cv::FeaturePool::~FeaturePool(){}
|
cv::FeaturePool::~FeaturePool(){}
|
||||||
cv::Dataset::~Dataset(){}
|
cv::Dataset::~Dataset(){}
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
|
||||||
class BoostedSoftCascadeOctave : public cv::Boost, public cv::SoftCascadeOctave
|
class BoostedSoftCascadeOctave : public cv::Boost, public cv::SoftCascadeOctave
|
||||||
{
|
{
|
||||||
public:
|
public:
|
||||||
|
|
||||||
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0, int shrinkage = 1);
|
BoostedSoftCascadeOctave(cv::Rect boundingBox = cv::Rect(), int npositives = 0, int nnegatives = 0, int logScale = 0,
|
||||||
|
int shrinkage = 1, int poolSize = 0);
|
||||||
virtual ~BoostedSoftCascadeOctave();
|
virtual ~BoostedSoftCascadeOctave();
|
||||||
virtual cv::AlgorithmInfo* info() const;
|
virtual cv::AlgorithmInfo* info() const;
|
||||||
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth);
|
||||||
@ -80,8 +84,8 @@ protected:
|
|||||||
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
|
||||||
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), const cv::Mat& missingDataMask=cv::Mat());
|
||||||
|
|
||||||
void processPositives(const Dataset* dataset, const FeaturePool* pool);
|
void processPositives(const Dataset* dataset);
|
||||||
void generateNegatives(const Dataset* dataset, const FeaturePool* pool);
|
void generateNegatives(const Dataset* dataset);
|
||||||
|
|
||||||
float predict( const Mat& _sample, const cv::Range range) const;
|
float predict( const Mat& _sample, const cv::Range range) const;
|
||||||
private:
|
private:
|
||||||
@ -102,9 +106,11 @@ private:
|
|||||||
CvBoostParams params;
|
CvBoostParams params;
|
||||||
|
|
||||||
Mat trainData;
|
Mat trainData;
|
||||||
|
|
||||||
|
cv::Ptr<cv::ChannelFeatureBuilder> builder;
|
||||||
};
|
};
|
||||||
|
|
||||||
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr)
|
BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn, int ls, int shr, int poolSize)
|
||||||
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
: logScale(ls), boundingBox(bb), npositives(np), nnegatives(nn), shrinkage(shr)
|
||||||
{
|
{
|
||||||
int maxSample = npositives + nnegatives;
|
int maxSample = npositives + nnegatives;
|
||||||
@ -132,6 +138,13 @@ BoostedSoftCascadeOctave::BoostedSoftCascadeOctave(cv::Rect bb, int np, int nn,
|
|||||||
}
|
}
|
||||||
|
|
||||||
params = _params;
|
params = _params;
|
||||||
|
|
||||||
|
builder = cv::ChannelFeatureBuilder::create();
|
||||||
|
|
||||||
|
int w = boundingBox.width;
|
||||||
|
int h = boundingBox.height;
|
||||||
|
|
||||||
|
integrals.create(poolSize, (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
||||||
}
|
}
|
||||||
|
|
||||||
BoostedSoftCascadeOctave::~BoostedSoftCascadeOctave(){}
|
BoostedSoftCascadeOctave::~BoostedSoftCascadeOctave(){}
|
||||||
@ -191,12 +204,11 @@ void BoostedSoftCascadeOctave::setRejectThresholds(cv::OutputArray _thresholds)
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const FeaturePool* pool)
|
void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
|
||||||
{
|
{
|
||||||
int w = boundingBox.width;
|
|
||||||
int h = boundingBox.height;
|
int h = boundingBox.height;
|
||||||
|
|
||||||
integrals.create(pool->size(), (w / shrinkage + 1) * (h / shrinkage * 10 + 1), CV_32SC1);
|
cv::ChannelFeatureBuilder& _builder = *builder;
|
||||||
|
|
||||||
int total = 0;
|
int total = 0;
|
||||||
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
|
for (int curr = 0; curr < dataset->available( Dataset::POSITIVE); ++curr)
|
||||||
@ -206,7 +218,7 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const Fe
|
|||||||
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
cv::Mat channels = integrals.row(total).reshape(0, h / shrinkage * 10 + 1);
|
||||||
sample = sample(boundingBox);
|
sample = sample(boundingBox);
|
||||||
|
|
||||||
pool->preprocess(sample, channels);
|
_builder(sample, channels);
|
||||||
responses.ptr<float>(total)[0] = 1.f;
|
responses.ptr<float>(total)[0] = 1.f;
|
||||||
|
|
||||||
if (++total >= npositives) break;
|
if (++total >= npositives) break;
|
||||||
@ -238,7 +250,7 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset, const Fe
|
|||||||
#undef USE_LONG_SEEDS
|
#undef USE_LONG_SEEDS
|
||||||
|
|
||||||
|
|
||||||
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const FeaturePool* pool)
|
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
||||||
{
|
{
|
||||||
// ToDo: set seed, use offsets
|
// ToDo: set seed, use offsets
|
||||||
sft::Random::engine eng(DX_DY_SEED);
|
sft::Random::engine eng(DX_DY_SEED);
|
||||||
@ -251,6 +263,8 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const F
|
|||||||
|
|
||||||
int total = 0;
|
int total = 0;
|
||||||
Mat sum;
|
Mat sum;
|
||||||
|
|
||||||
|
cv::ChannelFeatureBuilder& _builder = *builder;
|
||||||
for (int i = npositives; i < nnegatives + npositives; ++total)
|
for (int i = npositives; i < nnegatives + npositives; ++total)
|
||||||
{
|
{
|
||||||
int curr = iRand(idxEng);
|
int curr = iRand(idxEng);
|
||||||
@ -269,7 +283,7 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset, const F
|
|||||||
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
frame = frame(cv::Rect(dx, dy, boundingBox.width, boundingBox.height));
|
||||||
|
|
||||||
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
cv::Mat channels = integrals.row(i).reshape(0, h / shrinkage * 10 + 1);
|
||||||
pool->preprocess(frame, channels);
|
_builder(frame, channels);
|
||||||
|
|
||||||
dprintf("generated %d %d\n", dx, dy);
|
dprintf("generated %d %d\n", dx, dy);
|
||||||
// // if (predict(sum))
|
// // if (predict(sum))
|
||||||
@ -392,8 +406,8 @@ bool BoostedSoftCascadeOctave::train(const Dataset* dataset, const FeaturePool*
|
|||||||
params.weak_count = weaks;
|
params.weak_count = weaks;
|
||||||
|
|
||||||
// 1. fill integrals and classes
|
// 1. fill integrals and classes
|
||||||
processPositives(dataset, pool);
|
processPositives(dataset);
|
||||||
generateNegatives(dataset, pool);
|
generateNegatives(dataset);
|
||||||
|
|
||||||
// 2. only simple case (all features used)
|
// 2. only simple case (all features used)
|
||||||
int nfeatures = pool->size();
|
int nfeatures = pool->size();
|
||||||
@ -462,13 +476,16 @@ void BoostedSoftCascadeOctave::write( CvFileStorage* fs, std::string _name) cons
|
|||||||
CvBoost::write(fs, _name.c_str());
|
CvBoost::write(fs, _name.c_str());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
|
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
|
||||||
|
|
||||||
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
|
cv::SoftCascadeOctave::~SoftCascadeOctave(){}
|
||||||
|
|
||||||
cv::Ptr<cv::SoftCascadeOctave> cv::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
|
cv::Ptr<cv::SoftCascadeOctave> cv::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||||
int logScale, int shrinkage)
|
int logScale, int shrinkage, int poolSize)
|
||||||
{
|
{
|
||||||
cv::Ptr<cv::SoftCascadeOctave> octave(new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage));
|
cv::Ptr<cv::SoftCascadeOctave> octave(
|
||||||
|
new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage, poolSize));
|
||||||
return octave;
|
return octave;
|
||||||
}
|
}
|
||||||
|
Loading…
x
Reference in New Issue
Block a user