Dual TV-L1 optical flow implementation
This commit is contained in:
parent
772586801b
commit
0ad849d2fd
@ -641,6 +641,72 @@ Calculate an optical flow using "SimpleFlow" algorithm.
|
||||
|
||||
See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SAN-2012-05/.
|
||||
|
||||
|
||||
|
||||
OpticalFlowDual_TVL1
|
||||
--------------------
|
||||
"Dual TV L1" Optical Flow Algorithm.
|
||||
|
||||
.. ocv:class:: OpticalFlowDual_TVL12
|
||||
|
||||
|
||||
The class implements the "Dual TV L1" optical flow algorithm described in [Zach2007]_ and [Javier2012]_ .
|
||||
|
||||
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
|
||||
|
||||
.. ocv:member:: double tau
|
||||
|
||||
Time step of the numerical scheme.
|
||||
|
||||
.. ocv:member:: double lambda
|
||||
|
||||
Weight parameter for the data term, attachment parameter. This is the most relevant parameter, which determines the smoothness of the output. The smaller this parameter is, the smoother the solutions we obtain. It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
||||
|
||||
.. ocv:member:: double theta
|
||||
|
||||
Weight parameter for (u - v)^2, tightness parameter. It serves as a link between the attachment and the regularization terms. In theory, it should have a small value in order to maintain both parts in correspondence. The method is stable for a large range of values of this parameter.
|
||||
|
||||
.. ocv:member:: int nscales
|
||||
|
||||
Number of scales used to create the pyramid of images.
|
||||
|
||||
.. ocv:member:: int warps
|
||||
|
||||
Number of warpings per scale. Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the method. It also affects the running time, so it is a compromise between speed and accuracy.
|
||||
|
||||
.. ocv:member:: double epsilon
|
||||
|
||||
Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time. A small value will yield more accurate solutions at the expense of a slower convergence.
|
||||
|
||||
.. ocv:member:: int iterations
|
||||
|
||||
Stopping criterion iterations number used in the numerical scheme.
|
||||
|
||||
|
||||
|
||||
|
||||
OpticalFlowDual_TVL1::operator()
|
||||
--------------------------------
|
||||
Calculates an optical flow.
|
||||
|
||||
.. ocv:function:: void OpticalFlowDual_TVL1::operator ()(InputArray I0, InputArray I1, InputOutputArray flow)
|
||||
|
||||
:param prev: first 8-bit single-channel input image.
|
||||
|
||||
:param next: second input image of the same size and the same type as ``prev`` .
|
||||
|
||||
:param flow: computed flow image that has the same size as ``prev`` and type ``CV_32FC2`` .
|
||||
|
||||
|
||||
|
||||
OpticalFlowDual_TVL1::collectGarbage
|
||||
------------------------------------
|
||||
Releases all inner buffers.
|
||||
|
||||
.. ocv:function:: void OpticalFlowDual_TVL1::collectGarbage()
|
||||
|
||||
|
||||
|
||||
.. [Bouguet00] Jean-Yves Bouguet. Pyramidal Implementation of the Lucas Kanade Feature Tracker.
|
||||
|
||||
.. [Bradski98] Bradski, G.R. "Computer Vision Face Tracking for Use in a Perceptual User Interface", Intel, 1998
|
||||
@ -658,3 +724,7 @@ See [Tao2012]_. And site of project - http://graphics.berkeley.edu/papers/Tao-SA
|
||||
.. [Welch95] Greg Welch and Gary Bishop “An Introduction to the Kalman Filter”, 1995
|
||||
|
||||
.. [Tao2012] Michael Tao, Jiamin Bai, Pushmeet Kohli and Sylvain Paris. SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. Computer Graphics Forum (Eurographics 2012)
|
||||
|
||||
.. [Zach2007] C. Zach, T. Pock and H. Bischof. "A Duality Based Approach for Realtime TV-L1 Optical Flow", In Proceedings of Pattern Recognition (DAGM), Heidelberg, Germany, pp. 214-223, 2007
|
||||
|
||||
.. [Javier2012] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
|
@ -352,6 +352,105 @@ CV_EXPORTS_W void calcOpticalFlowSF(Mat& from,
|
||||
double upscale_sigma_color,
|
||||
double speed_up_thr);
|
||||
|
||||
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
||||
//
|
||||
// see reference:
|
||||
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
class CV_EXPORTS OpticalFlowDual_TVL1
|
||||
{
|
||||
public:
|
||||
OpticalFlowDual_TVL1();
|
||||
|
||||
void operator ()(InputArray I0, InputArray I1, InputOutputArray flow);
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
/**
|
||||
* Time step of the numerical scheme.
|
||||
*/
|
||||
double tau;
|
||||
|
||||
/**
|
||||
* Weight parameter for the data term, attachment parameter.
|
||||
* This is the most relevant parameter, which determines the smoothness of the output.
|
||||
* The smaller this parameter is, the smoother the solutions we obtain.
|
||||
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
||||
*/
|
||||
double lambda;
|
||||
|
||||
/**
|
||||
* Weight parameter for (u - v)^2, tightness parameter.
|
||||
* It serves as a link between the attachment and the regularization terms.
|
||||
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
||||
* The method is stable for a large range of values of this parameter.
|
||||
*/
|
||||
double theta;
|
||||
|
||||
/**
|
||||
* Number of scales used to create the pyramid of images.
|
||||
*/
|
||||
int nscales;
|
||||
|
||||
/**
|
||||
* Number of warpings per scale.
|
||||
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
||||
* This is a parameter that assures the stability of the method.
|
||||
* It also affects the running time, so it is a compromise between speed and accuracy.
|
||||
*/
|
||||
int warps;
|
||||
|
||||
/**
|
||||
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
||||
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
||||
*/
|
||||
double epsilon;
|
||||
|
||||
/**
|
||||
* Stopping criterion iterations number used in the numerical scheme.
|
||||
*/
|
||||
int iterations;
|
||||
|
||||
bool useInitialFlow;
|
||||
|
||||
private:
|
||||
void procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2);
|
||||
|
||||
std::vector<Mat_<float> > I0s;
|
||||
std::vector<Mat_<float> > I1s;
|
||||
std::vector<Mat_<float> > u1s;
|
||||
std::vector<Mat_<float> > u2s;
|
||||
|
||||
Mat_<float> I1x_buf;
|
||||
Mat_<float> I1y_buf;
|
||||
|
||||
Mat_<float> flowMap1_buf;
|
||||
Mat_<float> flowMap2_buf;
|
||||
|
||||
Mat_<float> I1w_buf;
|
||||
Mat_<float> I1wx_buf;
|
||||
Mat_<float> I1wy_buf;
|
||||
|
||||
Mat_<float> grad_buf;
|
||||
Mat_<float> rho_c_buf;
|
||||
|
||||
Mat_<float> v1_buf;
|
||||
Mat_<float> v2_buf;
|
||||
|
||||
Mat_<float> p11_buf;
|
||||
Mat_<float> p12_buf;
|
||||
Mat_<float> p21_buf;
|
||||
Mat_<float> p22_buf;
|
||||
|
||||
Mat_<float> div_p1_buf;
|
||||
Mat_<float> div_p2_buf;
|
||||
|
||||
Mat_<float> u1x_buf;
|
||||
Mat_<float> u1y_buf;
|
||||
Mat_<float> u2x_buf;
|
||||
Mat_<float> u2y_buf;
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
33
modules/video/perf/perf_tvl1optflow.cpp
Normal file
33
modules/video/perf/perf_tvl1optflow.cpp
Normal file
@ -0,0 +1,33 @@
|
||||
#include "perf_precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace perf;
|
||||
|
||||
typedef TestBaseWithParam< pair<string, string> > ImagePair;
|
||||
|
||||
pair<string, string> impair(const char* im1, const char* im2)
|
||||
{
|
||||
return make_pair(string(im1), string(im2));
|
||||
}
|
||||
|
||||
PERF_TEST_P(ImagePair, OpticalFlowDual_TVL1, testing::Values(impair("cv/optflow/RubberWhale1.png", "cv/optflow/RubberWhale2.png")))
|
||||
{
|
||||
declare.time(40);
|
||||
|
||||
Mat frame1 = imread(getDataPath(GetParam().first), IMREAD_GRAYSCALE);
|
||||
Mat frame2 = imread(getDataPath(GetParam().second), IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
ASSERT_FALSE(frame2.empty());
|
||||
|
||||
Mat flow;
|
||||
|
||||
OpticalFlowDual_TVL1 tvl1;
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
tvl1(frame1, frame2, flow);
|
||||
}
|
||||
|
||||
SANITY_CHECK(flow);
|
||||
}
|
865
modules/video/src/tvl1flow.cpp
Normal file
865
modules/video/src/tvl1flow.cpp
Normal file
@ -0,0 +1,865 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
/*
|
||||
//
|
||||
// This implementation is based on Javier Sánchez Pérez <jsanchez@dis.ulpgc.es> implementation.
|
||||
// Original BSD license:
|
||||
//
|
||||
// Copyright (c) 2011, Javier Sánchez Pérez, Enric Meinhardt Llopis
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistributions of source code must retain the above copyright notice, this
|
||||
// list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistributions in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
// POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
cv::OpticalFlowDual_TVL1::OpticalFlowDual_TVL1()
|
||||
{
|
||||
tau = 0.25;
|
||||
lambda = 0.15;
|
||||
theta = 0.3;
|
||||
nscales = 5;
|
||||
warps = 5;
|
||||
epsilon = 0.01;
|
||||
iterations = 300;
|
||||
useInitialFlow = false;
|
||||
}
|
||||
|
||||
void cv::OpticalFlowDual_TVL1::operator ()(InputArray _I0, InputArray _I1, InputOutputArray _flow)
|
||||
{
|
||||
Mat I0 = _I0.getMat();
|
||||
Mat I1 = _I1.getMat();
|
||||
|
||||
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
|
||||
CV_Assert( I0.size() == I1.size() );
|
||||
CV_Assert( I0.type() == I1.type() );
|
||||
CV_Assert( !useInitialFlow || (_flow.size() == I0.size() && _flow.type() == CV_32FC2) );
|
||||
CV_Assert( nscales > 0 );
|
||||
|
||||
// allocate memory for the pyramid structure
|
||||
I0s.resize(nscales);
|
||||
I1s.resize(nscales);
|
||||
u1s.resize(nscales);
|
||||
u2s.resize(nscales);
|
||||
|
||||
I0.convertTo(I0s[0], I0s[0].depth(), I0.depth() == CV_8U ? 1.0 : 255.0);
|
||||
I1.convertTo(I1s[0], I1s[0].depth(), I1.depth() == CV_8U ? 1.0 : 255.0);
|
||||
|
||||
if (useInitialFlow)
|
||||
{
|
||||
u1s[0].create(I0.size());
|
||||
u2s[0].create(I0.size());
|
||||
|
||||
Mat_<float> mv[] = {u1s[0], u2s[0]};
|
||||
|
||||
split(_flow.getMat(), mv);
|
||||
}
|
||||
|
||||
I1x_buf.create(I0.size());
|
||||
I1y_buf.create(I0.size());
|
||||
|
||||
flowMap1_buf.create(I0.size());
|
||||
flowMap2_buf.create(I0.size());
|
||||
|
||||
I1w_buf.create(I0.size());
|
||||
I1wx_buf.create(I0.size());
|
||||
I1wy_buf.create(I0.size());
|
||||
|
||||
grad_buf.create(I0.size());
|
||||
rho_c_buf.create(I0.size());
|
||||
|
||||
v1_buf.create(I0.size());
|
||||
v2_buf.create(I0.size());
|
||||
|
||||
p11_buf.create(I0.size());
|
||||
p12_buf.create(I0.size());
|
||||
p21_buf.create(I0.size());
|
||||
p22_buf.create(I0.size());
|
||||
|
||||
div_p1_buf.create(I0.size());
|
||||
div_p2_buf.create(I0.size());
|
||||
|
||||
u1x_buf.create(I0.size());
|
||||
u1y_buf.create(I0.size());
|
||||
u2x_buf.create(I0.size());
|
||||
u2y_buf.create(I0.size());
|
||||
|
||||
// create the scales
|
||||
for (int s = 1; s < nscales; ++s)
|
||||
{
|
||||
pyrDown(I0s[s - 1], I0s[s]);
|
||||
pyrDown(I1s[s - 1], I1s[s]);
|
||||
|
||||
if (I0s[s].cols < 16 || I0s[s].rows < 16)
|
||||
{
|
||||
nscales = s;
|
||||
break;
|
||||
}
|
||||
|
||||
if (useInitialFlow)
|
||||
{
|
||||
pyrDown(u1s[s - 1], u1s[s]);
|
||||
pyrDown(u2s[s - 1], u2s[s]);
|
||||
|
||||
multiply(u1s[s], Scalar::all(0.5), u1s[s]);
|
||||
multiply(u2s[s], Scalar::all(0.5), u2s[s]);
|
||||
}
|
||||
}
|
||||
|
||||
// pyramidal structure for computing the optical flow
|
||||
for (int s = nscales - 1; s >= 0; --s)
|
||||
{
|
||||
// compute the optical flow at the current scale
|
||||
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
|
||||
|
||||
// if this was the last scale, finish now
|
||||
if (s == 0)
|
||||
break;
|
||||
|
||||
// otherwise, upsample the optical flow
|
||||
|
||||
// zoom the optical flow for the next finer scale
|
||||
resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
|
||||
resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
|
||||
|
||||
// scale the optical flow with the appropriate zoom factor
|
||||
multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
|
||||
multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
|
||||
}
|
||||
|
||||
Mat uxy[] = {u1s[0], u2s[0]};
|
||||
merge(uxy, 2, _flow);
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
////////////////////////////////////////////////////////////
|
||||
// buildFlowMap
|
||||
|
||||
struct BuildFlowMapBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> u1;
|
||||
Mat_<float> u2;
|
||||
mutable Mat_<float> map1;
|
||||
mutable Mat_<float> map2;
|
||||
};
|
||||
|
||||
void BuildFlowMapBody::operator() (const Range& range) const
|
||||
{
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* u1Row = u1[y];
|
||||
const float* u2Row = u2[y];
|
||||
|
||||
float* map1Row = map1[y];
|
||||
float* map2Row = map2[y];
|
||||
|
||||
for (int x = 0; x < u1.cols; ++x)
|
||||
{
|
||||
map1Row[x] = x + u1Row[x];
|
||||
map2Row[x] = y + u2Row[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void buildFlowMap(const Mat_<float>& u1, const Mat_<float>& u2, Mat_<float>& map1, Mat_<float>& map2)
|
||||
{
|
||||
CV_DbgAssert( u2.size() == u1.size() );
|
||||
CV_DbgAssert( map1.size() == u1.size() );
|
||||
CV_DbgAssert( map2.size() == u1.size() );
|
||||
|
||||
BuildFlowMapBody body;
|
||||
|
||||
body.u1 = u1;
|
||||
body.u2 = u2;
|
||||
body.map1 = map1;
|
||||
body.map2 = map2;
|
||||
|
||||
parallel_for_(Range(0, u1.rows), body);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// centeredGradient
|
||||
|
||||
struct CenteredGradientBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> src;
|
||||
mutable Mat_<float> dx;
|
||||
mutable Mat_<float> dy;
|
||||
};
|
||||
|
||||
void CenteredGradientBody::operator() (const Range& range) const
|
||||
{
|
||||
const int last_col = src.cols - 1;
|
||||
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* srcPrevRow = src[y - 1];
|
||||
const float* srcCurRow = src[y];
|
||||
const float* srcNextRow = src[y + 1];
|
||||
|
||||
float* dxRow = dx[y];
|
||||
float* dyRow = dy[y];
|
||||
|
||||
for (int x = 1; x < last_col; ++x)
|
||||
{
|
||||
dxRow[x] = 0.5f * (srcCurRow[x + 1] - srcCurRow[x - 1]);
|
||||
dyRow[x] = 0.5f * (srcNextRow[x] - srcPrevRow[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void centeredGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
|
||||
{
|
||||
CV_DbgAssert( src.rows > 2 && src.cols > 2 );
|
||||
CV_DbgAssert( dx.size() == src.size() );
|
||||
CV_DbgAssert( dy.size() == src.size() );
|
||||
|
||||
const int last_row = src.rows - 1;
|
||||
const int last_col = src.cols - 1;
|
||||
|
||||
// compute the gradient on the center body of the image
|
||||
{
|
||||
CenteredGradientBody body;
|
||||
|
||||
body.src = src;
|
||||
body.dx = dx;
|
||||
body.dy = dy;
|
||||
|
||||
parallel_for_(Range(1, last_row), body);
|
||||
}
|
||||
|
||||
// compute the gradient on the first and last rows
|
||||
for (int x = 1; x < last_col; ++x)
|
||||
{
|
||||
dx(0, x) = 0.5f * (src(0, x + 1) - src(0, x - 1));
|
||||
dy(0, x) = 0.5f * (src(1, x) - src(0, x));
|
||||
|
||||
dx(last_row, x) = 0.5f * (src(last_row, x + 1) - src(last_row, x - 1));
|
||||
dy(last_row, x) = 0.5f * (src(last_row, x) - src(last_row - 1, x));
|
||||
}
|
||||
|
||||
// compute the gradient on the first and last columns
|
||||
for (int y = 1; y < last_row; ++y)
|
||||
{
|
||||
dx(y, 0) = 0.5f * (src(y, 1) - src(y, 0));
|
||||
dy(y, 0) = 0.5f * (src(y + 1, 0) - src(y - 1, 0));
|
||||
|
||||
dx(y, last_col) = 0.5f * (src(y, last_col) - src(y, last_col - 1));
|
||||
dy(y, last_col) = 0.5f * (src(y + 1, last_col) - src(y - 1, last_col));
|
||||
}
|
||||
|
||||
// compute the gradient at the four corners
|
||||
dx(0, 0) = 0.5f * (src(0, 1) - src(0, 0));
|
||||
dy(0, 0) = 0.5f * (src(1, 0) - src(0, 0));
|
||||
|
||||
dx(0, last_col) = 0.5f * (src(0, last_col) - src(0, last_col - 1));
|
||||
dy(0, last_col) = 0.5f * (src(1, last_col) - src(0, last_col));
|
||||
|
||||
dx(last_row, 0) = 0.5f * (src(last_row, 1) - src(last_row, 0));
|
||||
dy(last_row, 0) = 0.5f * (src(last_row, 0) - src(last_row - 1, 0));
|
||||
|
||||
dx(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row, last_col - 1));
|
||||
dy(last_row, last_col) = 0.5f * (src(last_row, last_col) - src(last_row - 1, last_col));
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// forwardGradient
|
||||
|
||||
struct ForwardGradientBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> src;
|
||||
mutable Mat_<float> dx;
|
||||
mutable Mat_<float> dy;
|
||||
};
|
||||
|
||||
void ForwardGradientBody::operator() (const Range& range) const
|
||||
{
|
||||
const int last_col = src.cols - 1;
|
||||
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* srcCurRow = src[y];
|
||||
const float* srcNextRow = src[y + 1];
|
||||
|
||||
float* dxRow = dx[y];
|
||||
float* dyRow = dy[y];
|
||||
|
||||
for (int x = 0; x < last_col; ++x)
|
||||
{
|
||||
dxRow[x] = srcCurRow[x + 1] - srcCurRow[x];
|
||||
dyRow[x] = srcNextRow[x] - srcCurRow[x];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void forwardGradient(const Mat_<float>& src, Mat_<float>& dx, Mat_<float>& dy)
|
||||
{
|
||||
CV_DbgAssert( src.rows > 2 && src.cols > 2 );
|
||||
CV_DbgAssert( dx.size() == src.size() );
|
||||
CV_DbgAssert( dy.size() == src.size() );
|
||||
|
||||
const int last_row = src.rows - 1;
|
||||
const int last_col = src.cols - 1;
|
||||
|
||||
// compute the gradient on the central body of the image
|
||||
{
|
||||
ForwardGradientBody body;
|
||||
|
||||
body.src = src;
|
||||
body.dx = dx;
|
||||
body.dy = dy;
|
||||
|
||||
parallel_for_(Range(0, last_row), body);
|
||||
}
|
||||
|
||||
// compute the gradient on the last row
|
||||
for (int x = 0; x < last_col; ++x)
|
||||
{
|
||||
dx(last_row, x) = src(last_row, x + 1) - src(last_row, x);
|
||||
dy(last_row, x) = 0.0f;
|
||||
}
|
||||
|
||||
// compute the gradient on the last column
|
||||
for (int y = 0; y < last_row; ++y)
|
||||
{
|
||||
dx(y, last_col) = 0.0f;
|
||||
dy(y, last_col) = src(y + 1, last_col) - src(y, last_col);
|
||||
}
|
||||
|
||||
dx(last_row, last_col) = 0.0f;
|
||||
dy(last_row, last_col) = 0.0f;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// divergence
|
||||
|
||||
struct DivergenceBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> v1;
|
||||
Mat_<float> v2;
|
||||
mutable Mat_<float> div;
|
||||
};
|
||||
|
||||
void DivergenceBody::operator() (const Range& range) const
|
||||
{
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* v1Row = v1[y];
|
||||
const float* v2PrevRow = v2[y - 1];
|
||||
const float* v2CurRow = v2[y];
|
||||
|
||||
float* divRow = div[y];
|
||||
|
||||
for(int x = 1; x < v1.cols; ++x)
|
||||
{
|
||||
const float v1x = v1Row[x] - v1Row[x - 1];
|
||||
const float v2y = v2CurRow[x] - v2PrevRow[x];
|
||||
|
||||
divRow[x] = v1x + v2y;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void divergence(const Mat_<float>& v1, const Mat_<float>& v2, Mat_<float>& div)
|
||||
{
|
||||
CV_DbgAssert( v1.rows > 2 && v1.cols > 2 );
|
||||
CV_DbgAssert( v2.size() == v1.size() );
|
||||
CV_DbgAssert( div.size() == v1.size() );
|
||||
|
||||
{
|
||||
DivergenceBody body;
|
||||
|
||||
body.v1 = v1;
|
||||
body.v2 = v2;
|
||||
body.div = div;
|
||||
|
||||
parallel_for_(Range(1, v1.rows), body);
|
||||
}
|
||||
|
||||
// compute the divergence on the first row
|
||||
for(int x = 1; x < v1.cols; ++x)
|
||||
div(0, x) = v1(0, x) - v1(0, x - 1) + v2(0, x);
|
||||
|
||||
// compute the divergence on the first column
|
||||
for (int y = 1; y < v1.rows; ++y)
|
||||
div(y, 0) = v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
|
||||
|
||||
div(0, 0) = v1(0, 0) + v2(0, 0);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// calcGradRho
|
||||
|
||||
struct CalcGradRhoBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> I0;
|
||||
Mat_<float> I1w;
|
||||
Mat_<float> I1wx;
|
||||
Mat_<float> I1wy;
|
||||
Mat_<float> u1;
|
||||
Mat_<float> u2;
|
||||
mutable Mat_<float> grad;
|
||||
mutable Mat_<float> rho_c;
|
||||
};
|
||||
|
||||
void CalcGradRhoBody::operator() (const Range& range) const
|
||||
{
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* I0Row = I0[y];
|
||||
const float* I1wRow = I1w[y];
|
||||
const float* I1wxRow = I1wx[y];
|
||||
const float* I1wyRow = I1wy[y];
|
||||
const float* u1Row = u1[y];
|
||||
const float* u2Row = u2[y];
|
||||
|
||||
float* gradRow = grad[y];
|
||||
float* rhoRow = rho_c[y];
|
||||
|
||||
for (int x = 0; x < I0.cols; ++x)
|
||||
{
|
||||
const float Ix2 = I1wxRow[x] * I1wxRow[x];
|
||||
const float Iy2 = I1wyRow[x] * I1wyRow[x];
|
||||
|
||||
// store the |Grad(I1)|^2
|
||||
gradRow[x] = Ix2 + Iy2;
|
||||
|
||||
// compute the constant part of the rho function
|
||||
rhoRow[x] = (I1wRow[x] - I1wxRow[x] * u1Row[x] - I1wyRow[x] * u2Row[x] - I0Row[x]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void calcGradRho(const Mat_<float>& I0, const Mat_<float>& I1w, const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2,
|
||||
Mat_<float>& grad, Mat_<float>& rho_c)
|
||||
{
|
||||
CV_DbgAssert( I1w.size() == I0.size() );
|
||||
CV_DbgAssert( I1wx.size() == I0.size() );
|
||||
CV_DbgAssert( I1wy.size() == I0.size() );
|
||||
CV_DbgAssert( u1.size() == I0.size() );
|
||||
CV_DbgAssert( u2.size() == I0.size() );
|
||||
CV_DbgAssert( grad.size() == I0.size() );
|
||||
CV_DbgAssert( rho_c.size() == I0.size() );
|
||||
|
||||
CalcGradRhoBody body;
|
||||
|
||||
body.I0 = I0;
|
||||
body.I1w = I1w;
|
||||
body.I1wx = I1wx;
|
||||
body.I1wy = I1wy;
|
||||
body.u1 = u1;
|
||||
body.u2 = u2;
|
||||
body.grad = grad;
|
||||
body.rho_c = rho_c;
|
||||
|
||||
parallel_for_(Range(0, I0.rows), body);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// estimateV
|
||||
|
||||
struct EstimateVBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> I1wx;
|
||||
Mat_<float> I1wy;
|
||||
Mat_<float> u1;
|
||||
Mat_<float> u2;
|
||||
Mat_<float> grad;
|
||||
Mat_<float> rho_c;
|
||||
mutable Mat_<float> v1;
|
||||
mutable Mat_<float> v2;
|
||||
float l_t;
|
||||
};
|
||||
|
||||
void EstimateVBody::operator() (const Range& range) const
|
||||
{
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* I1wxRow = I1wx[y];
|
||||
const float* I1wyRow = I1wy[y];
|
||||
const float* u1Row = u1[y];
|
||||
const float* u2Row = u2[y];
|
||||
const float* gradRow = grad[y];
|
||||
const float* rhoRow = rho_c[y];
|
||||
|
||||
float* v1Row = v1[y];
|
||||
float* v2Row = v2[y];
|
||||
|
||||
for (int x = 0; x < I1wx.cols; ++x)
|
||||
{
|
||||
const float rho = rhoRow[x] + (I1wxRow[x] * u1Row[x] + I1wyRow[x] * u2Row[x]);
|
||||
|
||||
float d1 = 0.0f;
|
||||
float d2 = 0.0f;
|
||||
|
||||
if (rho < -l_t * gradRow[x])
|
||||
{
|
||||
d1 = l_t * I1wxRow[x];
|
||||
d2 = l_t * I1wyRow[x];
|
||||
}
|
||||
else if (rho > l_t * gradRow[x])
|
||||
{
|
||||
d1 = -l_t * I1wxRow[x];
|
||||
d2 = -l_t * I1wyRow[x];
|
||||
}
|
||||
else if (gradRow[x] > numeric_limits<float>::epsilon())
|
||||
{
|
||||
float fi = -rho / gradRow[x];
|
||||
d1 = fi * I1wxRow[x];
|
||||
d2 = fi * I1wyRow[x];
|
||||
}
|
||||
|
||||
v1Row[x] = u1Row[x] + d1;
|
||||
v2Row[x] = u2Row[x] + d2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void estimateV(const Mat_<float>& I1wx, const Mat_<float>& I1wy, const Mat_<float>& u1, const Mat_<float>& u2, const Mat_<float>& grad, const Mat_<float>& rho_c,
|
||||
Mat_<float>& v1, Mat_<float>& v2, float l_t)
|
||||
{
|
||||
CV_DbgAssert( I1wy.size() == I1wx.size() );
|
||||
CV_DbgAssert( u1.size() == I1wx.size() );
|
||||
CV_DbgAssert( u2.size() == I1wx.size() );
|
||||
CV_DbgAssert( grad.size() == I1wx.size() );
|
||||
CV_DbgAssert( rho_c.size() == I1wx.size() );
|
||||
CV_DbgAssert( v1.size() == I1wx.size() );
|
||||
CV_DbgAssert( v2.size() == I1wx.size() );
|
||||
|
||||
EstimateVBody body;
|
||||
|
||||
body.I1wx = I1wx;
|
||||
body.I1wy = I1wy;
|
||||
body.u1 = u1;
|
||||
body.u2 = u2;
|
||||
body.grad = grad;
|
||||
body.rho_c = rho_c;
|
||||
body.v1 = v1;
|
||||
body.v2 = v2;
|
||||
body.l_t = l_t;
|
||||
|
||||
parallel_for_(Range(0, I1wx.rows), body);
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// estimateU
|
||||
|
||||
float estimateU(const Mat_<float>& v1, const Mat_<float>& v2, const Mat_<float>& div_p1, const Mat_<float>& div_p2, Mat_<float>& u1, Mat_<float>& u2, float theta)
|
||||
{
|
||||
CV_DbgAssert( v2.size() == v1.size() );
|
||||
CV_DbgAssert( div_p1.size() == v1.size() );
|
||||
CV_DbgAssert( div_p2.size() == v1.size() );
|
||||
CV_DbgAssert( u1.size() == v1.size() );
|
||||
CV_DbgAssert( u2.size() == v1.size() );
|
||||
|
||||
float error = 0.0f;
|
||||
for (int y = 0; y < v1.rows; ++y)
|
||||
{
|
||||
const float* v1Row = v1[y];
|
||||
const float* v2Row = v2[y];
|
||||
const float* divP1Row = div_p1[y];
|
||||
const float* divP2Row = div_p2[y];
|
||||
|
||||
float* u1Row = u1[y];
|
||||
float* u2Row = u2[y];
|
||||
|
||||
for (int x = 0; x < v1.cols; ++x)
|
||||
{
|
||||
const float u1k = u1Row[x];
|
||||
const float u2k = u2Row[x];
|
||||
|
||||
u1Row[x] = v1Row[x] + theta * divP1Row[x];
|
||||
u2Row[x] = v2Row[x] + theta * divP2Row[x];
|
||||
|
||||
error += (u1Row[x] - u1k) * (u1Row[x] - u1k) + (u2Row[x] - u2k) * (u2Row[x] - u2k);
|
||||
}
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// estimateDualVariables
|
||||
|
||||
struct EstimateDualVariablesBody : ParallelLoopBody
|
||||
{
|
||||
void operator() (const Range& range) const;
|
||||
|
||||
Mat_<float> u1x;
|
||||
Mat_<float> u1y;
|
||||
Mat_<float> u2x;
|
||||
Mat_<float> u2y;
|
||||
mutable Mat_<float> p11;
|
||||
mutable Mat_<float> p12;
|
||||
mutable Mat_<float> p21;
|
||||
mutable Mat_<float> p22;
|
||||
float taut;
|
||||
};
|
||||
|
||||
void EstimateDualVariablesBody::operator() (const Range& range) const
|
||||
{
|
||||
for (int y = range.start; y < range.end; ++y)
|
||||
{
|
||||
const float* u1xRow = u1x[y];
|
||||
const float* u1yRow = u1y[y];
|
||||
const float* u2xRow = u2x[y];
|
||||
const float* u2yRow = u2y[y];
|
||||
|
||||
float* p11Row = p11[y];
|
||||
float* p12Row = p12[y];
|
||||
float* p21Row = p21[y];
|
||||
float* p22Row = p22[y];
|
||||
|
||||
for (int x = 0; x < u1x.cols; ++x)
|
||||
{
|
||||
const float g1 = hypot(u1xRow[x], u1yRow[x]);
|
||||
const float g2 = hypot(u2xRow[x], u2yRow[x]);
|
||||
|
||||
const float ng1 = 1.0f + taut * g1;
|
||||
const float ng2 = 1.0f + taut * g2;
|
||||
|
||||
p11Row[x] = (p11Row[x] + taut * u1xRow[x]) / ng1;
|
||||
p12Row[x] = (p12Row[x] + taut * u1yRow[x]) / ng1;
|
||||
p21Row[x] = (p21Row[x] + taut * u2xRow[x]) / ng2;
|
||||
p22Row[x] = (p22Row[x] + taut * u2yRow[x]) / ng2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void estimateDualVariables(const Mat_<float>& u1x, const Mat_<float>& u1y, const Mat_<float>& u2x, const Mat_<float>& u2y,
|
||||
Mat_<float>& p11, Mat_<float>& p12, Mat_<float>& p21, Mat_<float>& p22, float taut)
|
||||
{
|
||||
CV_DbgAssert( u1y.size() == u1x.size() );
|
||||
CV_DbgAssert( u2x.size() == u1x.size() );
|
||||
CV_DbgAssert( u2y.size() == u1x.size() );
|
||||
CV_DbgAssert( p11.size() == u1x.size() );
|
||||
CV_DbgAssert( p12.size() == u1x.size() );
|
||||
CV_DbgAssert( p21.size() == u1x.size() );
|
||||
CV_DbgAssert( p22.size() == u1x.size() );
|
||||
|
||||
EstimateDualVariablesBody body;
|
||||
|
||||
body.u1x = u1x;
|
||||
body.u1y = u1y;
|
||||
body.u2x = u2x;
|
||||
body.u2y = u2y;
|
||||
body.p11 = p11;
|
||||
body.p12 = p12;
|
||||
body.p21 = p21;
|
||||
body.p22 = p22;
|
||||
body.taut = taut;
|
||||
|
||||
parallel_for_(Range(0, u1x.rows), body);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::OpticalFlowDual_TVL1::procOneScale(const Mat_<float>& I0, const Mat_<float>& I1, Mat_<float>& u1, Mat_<float>& u2)
|
||||
{
|
||||
const float scaledEpsilon = static_cast<float>(epsilon * epsilon * I0.size().area());
|
||||
|
||||
CV_DbgAssert( I1.size() == I0.size() );
|
||||
CV_DbgAssert( I1.type() == I0.type() );
|
||||
CV_DbgAssert( u1.empty() || u1.size() == I0.size() );
|
||||
CV_DbgAssert( u2.size() == u1.size() );
|
||||
|
||||
if (u1.empty())
|
||||
{
|
||||
u1.create(I0.size());
|
||||
u1.setTo(Scalar::all(0));
|
||||
|
||||
u2.create(I0.size());
|
||||
u2.setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
Mat_<float> I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
centeredGradient(I1, I1x, I1y);
|
||||
|
||||
Mat_<float> flowMap1 = flowMap1_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> flowMap2 = flowMap2_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
Mat_<float> I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
Mat_<float> grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
Mat_<float> v1 = v1_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> v2 = v2_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
Mat_<float> p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
p11.setTo(Scalar::all(0));
|
||||
p12.setTo(Scalar::all(0));
|
||||
p21.setTo(Scalar::all(0));
|
||||
p22.setTo(Scalar::all(0));
|
||||
|
||||
Mat_<float> div_p1 = div_p1_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> div_p2 = div_p2_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
Mat_<float> u1x = u1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> u1y = u1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> u2x = u2x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
Mat_<float> u2y = u2y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
const float l_t = static_cast<float>(lambda * theta);
|
||||
const float taut = static_cast<float>(tau / theta);
|
||||
|
||||
for (int warpings = 0; warpings < warps; ++warpings)
|
||||
{
|
||||
// compute the warping of the target image and its derivatives
|
||||
buildFlowMap(u1, u2, flowMap1, flowMap2);
|
||||
remap(I1, I1w, flowMap1, flowMap2, INTER_CUBIC);
|
||||
remap(I1x, I1wx, flowMap1, flowMap2, INTER_CUBIC);
|
||||
remap(I1y, I1wy, flowMap1, flowMap2, INTER_CUBIC);
|
||||
|
||||
calcGradRho(I0, I1w, I1wx, I1wy, u1, u2, grad, rho_c);
|
||||
|
||||
float error = numeric_limits<float>::max();
|
||||
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
|
||||
{
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
||||
estimateV(I1wx, I1wy, u1, u2, grad, rho_c, v1, v2, l_t);
|
||||
|
||||
// compute the divergence of the dual variable (p1, p2)
|
||||
divergence(p11, p12, div_p1);
|
||||
divergence(p21, p22, div_p2);
|
||||
|
||||
// estimate the values of the optical flow (u1, u2)
|
||||
error = estimateU(v1, v2, div_p1, div_p2, u1, u2, static_cast<float>(theta));
|
||||
|
||||
// compute the gradient of the optical flow (Du1, Du2)
|
||||
forwardGradient(u1, u1x, u1y);
|
||||
forwardGradient(u2, u2x, u2y);
|
||||
|
||||
// estimate the values of the dual variable (p1, p2)
|
||||
estimateDualVariables(u1x, u1y, u2x, u2y, p11, p12, p21, p22, taut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namespace
|
||||
{
|
||||
template <typename T> void releaseVector(vector<T>& v)
|
||||
{
|
||||
vector<T> empty;
|
||||
empty.swap(v);
|
||||
}
|
||||
}
|
||||
|
||||
void cv::OpticalFlowDual_TVL1::collectGarbage()
|
||||
{
|
||||
releaseVector(I0s);
|
||||
releaseVector(I1s);
|
||||
releaseVector(u1s);
|
||||
releaseVector(u2s);
|
||||
|
||||
I1x_buf.release();
|
||||
I1y_buf.release();
|
||||
|
||||
flowMap1_buf.release();
|
||||
flowMap2_buf.release();
|
||||
|
||||
I1w_buf.release();
|
||||
I1wx_buf.release();
|
||||
I1wy_buf.release();
|
||||
|
||||
grad_buf.release();
|
||||
rho_c_buf.release();
|
||||
|
||||
v1_buf.release();
|
||||
v2_buf.release();
|
||||
|
||||
p11_buf.release();
|
||||
p12_buf.release();
|
||||
p21_buf.release();
|
||||
p22_buf.release();
|
||||
|
||||
div_p1_buf.release();
|
||||
div_p2_buf.release();
|
||||
|
||||
u1x_buf.release();
|
||||
u1y_buf.release();
|
||||
u2x_buf.release();
|
||||
u2y_buf.release();
|
||||
}
|
136
modules/video/test/test_tvl1optflow.cpp
Normal file
136
modules/video/test/test_tvl1optflow.cpp
Normal file
@ -0,0 +1,136 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include <fstream>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cvtest;
|
||||
|
||||
//#define DUMP
|
||||
|
||||
namespace
|
||||
{
|
||||
// first four bytes, should be the same in little endian
|
||||
const float FLO_TAG_FLOAT = 202021.25f; // check for this when READING the file
|
||||
const char FLO_TAG_STRING[] = "PIEH"; // use this when WRITING the file
|
||||
|
||||
// binary file format for flow data specified here:
|
||||
// http://vision.middlebury.edu/flow/data/
|
||||
void writeOpticalFlowToFile(const Mat_<Point2f>& flow, const string& fileName)
|
||||
{
|
||||
ofstream file(fileName.c_str(), ios_base::binary);
|
||||
|
||||
file << FLO_TAG_STRING;
|
||||
|
||||
file.write((const char*) &flow.cols, sizeof(int));
|
||||
file.write((const char*) &flow.rows, sizeof(int));
|
||||
|
||||
for (int i = 0; i < flow.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < flow.cols; ++j)
|
||||
{
|
||||
const Point2f u = flow(i, j);
|
||||
|
||||
file.write((const char*) &u.x, sizeof(float));
|
||||
file.write((const char*) &u.y, sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// binary file format for flow data specified here:
|
||||
// http://vision.middlebury.edu/flow/data/
|
||||
void readOpticalFlowFromFile(Mat_<Point2f>& flow, const string& fileName)
|
||||
{
|
||||
ifstream file(fileName.c_str(), ios_base::binary);
|
||||
|
||||
float tag;
|
||||
file.read((char*) &tag, sizeof(float));
|
||||
CV_Assert( tag == FLO_TAG_FLOAT );
|
||||
|
||||
Size size;
|
||||
|
||||
file.read((char*) &size.width, sizeof(int));
|
||||
file.read((char*) &size.height, sizeof(int));
|
||||
|
||||
flow.create(size);
|
||||
|
||||
for (int i = 0; i < flow.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < flow.cols; ++j)
|
||||
{
|
||||
Point2f u;
|
||||
|
||||
file.read((char*) &u.x, sizeof(float));
|
||||
file.read((char*) &u.y, sizeof(float));
|
||||
|
||||
flow(i, j) = u;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Video_calcOpticalFlowDual_TVL1, Regression)
|
||||
{
|
||||
const string frame1_path = TS::ptr()->get_data_path() + "optflow/RubberWhale1.png";
|
||||
const string frame2_path = TS::ptr()->get_data_path() + "optflow/RubberWhale2.png";
|
||||
const string gold_flow_path = TS::ptr()->get_data_path() + "optflow/tvl1_flow.flo";
|
||||
|
||||
Mat frame1 = imread(frame1_path, IMREAD_GRAYSCALE);
|
||||
Mat frame2 = imread(frame2_path, IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
ASSERT_FALSE(frame2.empty());
|
||||
|
||||
Mat_<Point2f> flow;
|
||||
OpticalFlowDual_TVL1 tvl1;
|
||||
|
||||
tvl1(frame1, frame2, flow);
|
||||
|
||||
#ifdef DUMP
|
||||
writeOpticalFlowToFile(flow, gold_flow_path);
|
||||
#else
|
||||
Mat_<Point2f> gold;
|
||||
readOpticalFlowFromFile(gold, gold_flow_path);
|
||||
double err = norm(gold, flow, NORM_INF);
|
||||
EXPECT_EQ(0.0f, err);
|
||||
#endif
|
||||
}
|
193
samples/cpp/tvl1_optical_flow.cpp
Normal file
193
samples/cpp/tvl1_optical_flow.cpp
Normal file
@ -0,0 +1,193 @@
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
inline bool isFlowCorrect(Point2f u)
|
||||
{
|
||||
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
||||
}
|
||||
|
||||
static Vec3b computeColor(float fx, float fy)
|
||||
{
|
||||
static bool first = true;
|
||||
|
||||
// relative lengths of color transitions:
|
||||
// these are chosen based on perceptual similarity
|
||||
// (e.g. one can distinguish more shades between red and yellow
|
||||
// than between yellow and green)
|
||||
const int RY = 15;
|
||||
const int YG = 6;
|
||||
const int GC = 4;
|
||||
const int CB = 11;
|
||||
const int BM = 13;
|
||||
const int MR = 6;
|
||||
const int NCOLS = RY + YG + GC + CB + BM + MR;
|
||||
static Vec3i colorWheel[NCOLS];
|
||||
|
||||
if (first)
|
||||
{
|
||||
int k = 0;
|
||||
|
||||
for (int i = 0; i < RY; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
|
||||
|
||||
for (int i = 0; i < YG; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
|
||||
|
||||
for (int i = 0; i < GC; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
|
||||
|
||||
for (int i = 0; i < CB; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
|
||||
|
||||
for (int i = 0; i < BM; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
|
||||
|
||||
for (int i = 0; i < MR; ++i, ++k)
|
||||
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
|
||||
|
||||
first = false;
|
||||
}
|
||||
|
||||
const float rad = sqrt(fx * fx + fy * fy);
|
||||
const float a = atan2(-fy, -fx) / CV_PI;
|
||||
|
||||
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
|
||||
const int k0 = static_cast<int>(fk);
|
||||
const int k1 = (k0 + 1) % NCOLS;
|
||||
const float f = fk - k0;
|
||||
|
||||
Vec3b pix;
|
||||
|
||||
for (int b = 0; b < 3; b++)
|
||||
{
|
||||
const float col0 = colorWheel[k0][b] / 255.0;
|
||||
const float col1 = colorWheel[k1][b] / 255.0;
|
||||
|
||||
float col = (1 - f) * col0 + f * col1;
|
||||
|
||||
if (rad <= 1)
|
||||
col = 1 - rad * (1 - col); // increase saturation with radius
|
||||
else
|
||||
col *= .75; // out of range
|
||||
|
||||
pix[2 - b] = static_cast<int>(255.0 * col);
|
||||
}
|
||||
|
||||
return pix;
|
||||
}
|
||||
|
||||
static void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1)
|
||||
{
|
||||
dst.create(flow.size(), CV_8UC3);
|
||||
dst.setTo(Scalar::all(0));
|
||||
|
||||
// determine motion range:
|
||||
float maxrad = maxmotion;
|
||||
|
||||
if (maxmotion <= 0)
|
||||
{
|
||||
maxrad = 1;
|
||||
for (int y = 0; y < flow.rows; ++y)
|
||||
{
|
||||
for (int x = 0; x < flow.cols; ++x)
|
||||
{
|
||||
Point2f u = flow(y, x);
|
||||
|
||||
if (!isFlowCorrect(u))
|
||||
continue;
|
||||
|
||||
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int y = 0; y < flow.rows; ++y)
|
||||
{
|
||||
for (int x = 0; x < flow.cols; ++x)
|
||||
{
|
||||
Point2f u = flow(y, x);
|
||||
|
||||
if (isFlowCorrect(u))
|
||||
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// binary file format for flow data specified here:
|
||||
// http://vision.middlebury.edu/flow/data/
|
||||
static void writeOpticalFlowToFile(const Mat_<Point2f>& flow, const string& fileName)
|
||||
{
|
||||
static const char FLO_TAG_STRING[] = "PIEH";
|
||||
|
||||
ofstream file(fileName.c_str(), ios_base::binary);
|
||||
|
||||
file << FLO_TAG_STRING;
|
||||
|
||||
file.write((const char*) &flow.cols, sizeof(int));
|
||||
file.write((const char*) &flow.rows, sizeof(int));
|
||||
|
||||
for (int i = 0; i < flow.rows; ++i)
|
||||
{
|
||||
for (int j = 0; j < flow.cols; ++j)
|
||||
{
|
||||
const Point2f u = flow(i, j);
|
||||
|
||||
file.write((const char*) &u.x, sizeof(float));
|
||||
file.write((const char*) &u.y, sizeof(float));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char* argv[])
|
||||
{
|
||||
if (argc < 3)
|
||||
{
|
||||
cerr << "Usage : " << argv[0] << "<frame0> <frame1> [<output_flow>]" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat frame0 = imread(argv[1], IMREAD_GRAYSCALE);
|
||||
Mat frame1 = imread(argv[2], IMREAD_GRAYSCALE);
|
||||
|
||||
if (frame0.empty())
|
||||
{
|
||||
cerr << "Can't open image [" << argv[1] << "]" << endl;
|
||||
return -1;
|
||||
}
|
||||
if (frame1.empty())
|
||||
{
|
||||
cerr << "Can't open image [" << argv[2] << "]" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (frame1.size() != frame0.size())
|
||||
{
|
||||
cerr << "Images should be of equal sizes" << endl;
|
||||
return -1;
|
||||
}
|
||||
|
||||
Mat_<Point2f> flow;
|
||||
OpticalFlowDual_TVL1 tvl1;
|
||||
|
||||
const double start = getTickCount();
|
||||
tvl1(frame0, frame1, flow);
|
||||
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
||||
cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl;
|
||||
|
||||
Mat out;
|
||||
drawOpticalFlow(flow, out);
|
||||
|
||||
if (argc == 4)
|
||||
writeOpticalFlowToFile(flow, argv[3]);
|
||||
|
||||
imshow("Flow", out);
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user