refactored and extended arithm operations add/sub/mul/div/absdiff

This commit is contained in:
Ilya Lavrenov
2013-09-24 13:34:55 +04:00
parent 5ff5fdd73d
commit 0ad03162df
8 changed files with 307 additions and 2856 deletions

View File

@@ -62,11 +62,11 @@ namespace cv
{
namespace ocl
{
////////////////////////////////OpenCL kernel strings/////////////////////
//////////////////////////////// OpenCL kernel strings /////////////////////
extern const char *transpose_kernel;
extern const char *arithm_nonzero;
extern const char *arithm_sum;
extern const char *arithm_2_mat;
extern const char *arithm_sum_3;
extern const char *arithm_minMax;
extern const char *arithm_minMax_mask;
@@ -74,6 +74,7 @@ namespace cv
extern const char *arithm_minMaxLoc_mask;
extern const char *arithm_LUT;
extern const char *arithm_add;
extern const char *arithm_add_mask;
extern const char *arithm_add_scalar;
extern const char *arithm_add_scalar_mask;
extern const char *arithm_bitwise_binary;
@@ -83,9 +84,7 @@ namespace cv
extern const char *arithm_bitwise_not;
extern const char *arithm_compare_eq;
extern const char *arithm_compare_ne;
extern const char *arithm_mul;
extern const char *arithm_div;
extern const char *arithm_absdiff;
extern const char *arithm_magnitudeSqr;
extern const char *arithm_transpose;
extern const char *arithm_flip;
extern const char *arithm_flip_rc;
@@ -97,390 +96,176 @@ namespace cv
extern const char *arithm_addWeighted;
extern const char *arithm_phase;
extern const char *arithm_pow;
extern const char *arithm_magnitudeSqr;
extern const char *arithm_setidentity;
//extern const char * jhp_transpose_kernel;
int64 kernelrealtotal = 0;
int64 kernelalltotal = 0;
int64 reducetotal = 0;
int64 downloadtotal = 0;
int64 alltotal = 0;
}
}
//////////////////////////////////////////////////////////////////////////////
/////////////////////// add subtract multiply divide /////////////////////////
//////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
/////////////////////// add subtract multiply divide /////////////////////////
//////////////////////////////////////////////////////////////////////////////
template<typename T>
void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst,
string kernelName, const char **kernelString, void *_scalar, int op_type = 0)
enum { ADD = 0, SUB, MUL, DIV, ABS_DIFF };
static void arithmetic_run_generic(const oclMat &src1, const oclMat &src2, const Scalar & scalar, const oclMat & mask,
oclMat &dst, int op_type, bool use_scalar = false)
{
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
Context *clCxt = src1.clCxt;
bool hasDouble = clCxt->supportsFeature(Context::CL_DOUBLE);
if (!hasDouble && (src1.depth() == CV_64F || src2.depth() == CV_64F || dst.depth() == CV_64F))
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
CV_Error(CV_GpuNotSupported, "Selected device doesn't support double\r\n");
return;
}
dst.create(src1.size(), src1.type());
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols &&
src1.rows == src2.rows && src2.rows == dst.rows);
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type());
CV_Assert(src1.depth() != CV_8S);
Context *clCxt = src1.clCxt;
int channels = dst.oclchannels();
int depth = dst.depth();
int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
{4, 0, 4, 4, 1, 1, 1},
{4, 0, 4, 4, 1, 1, 1},
{4, 0, 4, 4, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][depth];
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, dst.rows, 1 };
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
T scalar;
if(_scalar != NULL)
{
double scalar1 = *((double *)_scalar);
scalar = (T)scalar1;
args.push_back( make_pair( sizeof(T), (void *)&scalar ));
}
switch(op_type)
{
case MAT_ADD:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth, "-D ARITHM_ADD");
break;
case MAT_SUB:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth, "-D ARITHM_SUB");
break;
default:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth);
}
}
static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst,
string kernelName, const char **kernelString, int op_type = 0)
{
arithmetic_run<char>(src1, src2, dst, kernelName, kernelString, (void *)NULL, op_type);
}
static void arithmetic_run(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask,
string kernelName, const char **kernelString, int op_type = 0)
{
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
CV_Assert(src2.empty() || (!src2.empty() && src1.type() == src2.type() && src1.size() == src2.size()));
CV_Assert(mask.empty() || (!mask.empty() && mask.type() == CV_8UC1 && mask.size() == src1.size()));
CV_Assert(op_type >= ADD && op_type <= ABS_DIFF);
dst.create(src1.size(), src1.type());
CV_Assert(src1.cols == src2.cols && src2.cols == dst.cols &&
src1.rows == src2.rows && src2.rows == dst.rows &&
src1.rows == mask.rows && src1.cols == mask.cols);
CV_Assert(src1.type() == src2.type() && src1.type() == dst.type());
CV_Assert(src1.depth() != CV_8S);
CV_Assert(mask.type() == CV_8U);
int oclChannels = src1.oclchannels(), depth = src1.depth();
int src1step1 = src1.step / src1.elemSize(), src1offset1 = src1.offset / src1.elemSize();
int src2step1 = src2.step / src2.elemSize(), src2offset1 = src2.offset / src2.elemSize();
int maskstep1 = mask.step, maskoffset1 = mask.offset / mask.elemSize();
int dststep1 = dst.step / dst.elemSize(), dstoffset1 = dst.offset / dst.elemSize();
oclMat m;
Context *clCxt = src1.clCxt;
int channels = dst.oclchannels();
int depth = dst.depth();
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
int vector_lengths[4][7] = {{4, 4, 2, 2, 1, 1, 1},
{2, 2, 1, 1, 1, 1, 1},
{4, 4, 2, 2 , 1, 1, 1},
{1, 1, 1, 1, 1, 1, 1}
};
std::string kernelName = op_type == ABS_DIFF ? "arithm_absdiff" : "arithm_binary_op";
size_t vector_length = vector_lengths[channels - 1][depth];
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1);
int cols = divUp(dst.cols + offset_cols, vector_length);
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
const char * const WTypeMap[] = { "short", "short", "int", "int", "int", "float", "double" };
const char operationsMap[] = { '+', '-', '*', '/', '-' };
const char * const channelMap[] = { "", "", "2", "4", "4" };
bool haveScalar = use_scalar || src2.empty();
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, dst.rows, 1 };
int WDepth = depth;
if (haveScalar)
WDepth = hasDouble && WDepth == CV_64F ? CV_64F : CV_32F;
if (op_type == DIV)
WDepth = hasDouble ? CV_64F : CV_32F;
else if (op_type == MUL)
WDepth = hasDouble && (depth == CV_32S || depth == CV_64F) ? CV_64F : CV_32F;
std::string buildOptions = format("-D T=%s%s -D WT=%s%s -D convertToT=convert_%s%s%s -D Operation=%c"
" -D convertToWT=convert_%s%s",
typeMap[depth], channelMap[oclChannels],
WTypeMap[WDepth], channelMap[oclChannels],
typeMap[depth], channelMap[oclChannels], (depth >= CV_32F ? "" : (depth == CV_32S ? "_rte" : "_sat_rte")),
operationsMap[op_type], WTypeMap[WDepth], channelMap[oclChannels]);
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&mask.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1step1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1offset1 ));
switch (op_type)
if (!src2.empty())
{
case MAT_ADD:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth, "-D ARITHM_ADD");
break;
case MAT_SUB:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth, "-D ARITHM_SUB");
break;
default:
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth);
args.push_back( make_pair( sizeof(cl_mem), (void *)&src2.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2step1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src2offset1 ));
kernelName += "_mat";
}
if (haveScalar)
{
const int WDepthMap[] = { CV_16S, CV_16S, CV_32S, CV_32S, CV_32S, CV_32F, CV_64F };
m.create(1, 1, CV_MAKE_TYPE(WDepthMap[WDepth], oclChannels));
m.setTo(scalar);
args.push_back( make_pair( sizeof(cl_mem), (void *)&m.data ));
kernelName += "_scalar";
}
if (!mask.empty())
{
args.push_back( make_pair( sizeof(cl_mem), (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&maskstep1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&maskoffset1 ));
kernelName += "_mask";
}
if (op_type == DIV)
kernelName += "_div";
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dststep1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstoffset1 ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src1.rows ));
openCLExecuteKernel(clCxt, mask.empty() ?
(!src2.empty() ? &arithm_add : &arithm_add_scalar) :
(!src2.empty() ? &arithm_add_mask : &arithm_add_scalar_mask),
kernelName, globalThreads, localThreads,
args, -1, -1, buildOptions.c_str());
}
void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst)
{
arithmetic_run(src1, src2, dst, "arithm_add", &arithm_add, MAT_ADD);
}
void cv::ocl::add(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask)
{
arithmetic_run(src1, src2, dst, mask, "arithm_add_with_mask", &arithm_add, MAT_ADD);
}
void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst)
{
arithmetic_run(src1, src2, dst, "arithm_add", &arithm_add, MAT_SUB);
}
void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask)
{
arithmetic_run(src1, src2, dst, mask, "arithm_add_with_mask", &arithm_add, MAT_SUB);
}
typedef void (*MulDivFunc)(const oclMat &src1, const oclMat &src2, oclMat &dst, string kernelName,
const char **kernelString, void *scalar);
void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar)
{
if(src1.clCxt->supportsFeature(Context::CL_DOUBLE) && (src1.depth() == CV_64F))
arithmetic_run<double>(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar));
else
arithmetic_run<float>(src1, src2, dst, "arithm_mul", &arithm_mul, (void *)(&scalar));
}
void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar)
{
if(src1.clCxt->supportsFeature(Context::CL_DOUBLE))
arithmetic_run<double>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar));
else
arithmetic_run<float>(src1, src2, dst, "arithm_div", &arithm_div, (void *)(&scalar));
}
template <typename WT , typename CL_WT>
void arithmetic_scalar_run(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar)
{
if(!src1.clCxt->supportsFeature(Context::CL_DOUBLE) && src1.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
dst.create(src1.size(), src1.type());
CV_Assert(src1.cols == dst.cols && src1.rows == dst.rows &&
src1.type() == dst.type());
//CV_Assert(src1.depth() != CV_8S);
if(mask.data)
{
CV_Assert(mask.type() == CV_8U && src1.rows == mask.rows && src1.cols == mask.cols);
}
Context *clCxt = src1.clCxt;
int channels = dst.oclchannels();
int depth = dst.depth();
WT s[4] = { saturate_cast<WT>(src2.val[0]), saturate_cast<WT>(src2.val[1]),
saturate_cast<WT>(src2.val[2]), saturate_cast<WT>(src2.val[3])
};
int vector_lengths[4][7] = {{4, 0, 2, 2, 1, 1, 1},
{2, 0, 1, 1, 1, 1, 1},
{4, 0, 2, 2 , 1, 1, 1},
{1, 0, 1, 1, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][depth];
int offset_cols = ((dst.offset % dst.step) / dst.elemSize()) & (vector_length - 1);
int cols = divUp(dst.cols + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, dst.rows, 1 };
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src1.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.offset));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.offset));
if(mask.data)
{
args.push_back( make_pair( sizeof(cl_mem) , (void *)&mask.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&mask.offset));
}
args.push_back( make_pair( sizeof(CL_WT) , (void *)&s ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src1.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst_step1 ));
if(isMatSubScalar != 0)
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth, "-D ARITHM_SUB");
else
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, channels, depth, "-D ARITHM_ADD");
}
static void arithmetic_scalar_run(const oclMat &src, oclMat &dst, string kernelName, const char **kernelString, double scalar)
{
if(!src.clCxt->supportsFeature(Context::CL_DOUBLE) && src.type() == CV_64F)
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
dst.create(src.size(), src.type());
CV_Assert(src.cols == dst.cols && src.rows == dst.rows);
CV_Assert(src.type() == dst.type());
CV_Assert(src.depth() != CV_8S);
Context *clCxt = src.clCxt;
int channels = dst.oclchannels();
int depth = dst.depth();
int vector_lengths[4][7] = {{4, 0, 4, 4, 1, 1, 1},
{4, 0, 4, 4, 1, 1, 1},
{4, 0, 4, 4 , 1, 1, 1},
{4, 0, 4, 4, 1, 1, 1}
};
size_t vector_length = vector_lengths[channels - 1][depth];
int offset_cols = (dst.offset / dst.elemSize1()) & (vector_length - 1);
int cols = divUp(dst.cols * channels + offset_cols, vector_length);
size_t localThreads[3] = { 64, 4, 1 };
size_t globalThreads[3] = { cols, dst.rows, 1 };
int dst_step1 = dst.cols * dst.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.offset ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1 ));
float f_scalar = (float)scalar;
if(src.clCxt->supportsFeature(Context::CL_DOUBLE))
args.push_back( make_pair( sizeof(cl_double), (void *)&scalar ));
else
{
args.push_back( make_pair( sizeof(cl_float), (void *)&f_scalar));
}
openCLExecuteKernel(clCxt, kernelString, kernelName, globalThreads, localThreads, args, -1, depth);
}
typedef void (*ArithmeticFuncS)(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar);
static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString, int isMatSubScalar)
{
static ArithmeticFuncS tab[8] =
{
arithmetic_scalar_run<int, cl_int4>,
arithmetic_scalar_run<int, cl_int4>,
arithmetic_scalar_run<int, cl_int4>,
arithmetic_scalar_run<int, cl_int4>,
arithmetic_scalar_run<int, cl_int4>,
arithmetic_scalar_run<float, cl_float4>,
arithmetic_scalar_run<double, cl_double4>,
0
};
ArithmeticFuncS func = tab[src1.depth()];
if(func == 0)
cv::ocl::error("Unsupported arithmetic operation", __FILE__, __LINE__);
func(src1, src2, dst, mask, kernelName, kernelString, isMatSubScalar);
}
static void arithmetic_scalar(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask, string kernelName, const char **kernelString)
{
arithmetic_scalar(src1, src2, dst, mask, kernelName, kernelString, 0);
arithmetic_run_generic(src1, src2, Scalar(), mask, dst, ADD);
}
void cv::ocl::add(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask)
{
string kernelName = mask.data ? "arithm_s_add_with_mask" : "arithm_s_add";
const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar;
arithmetic_run_generic(src1, oclMat(), src2, mask, dst, ADD);
}
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString);
void cv::ocl::subtract(const oclMat &src1, const oclMat &src2, oclMat &dst, const oclMat &mask)
{
arithmetic_run_generic(src1, src2, Scalar(), mask, dst, SUB);
}
void cv::ocl::subtract(const oclMat &src1, const Scalar &src2, oclMat &dst, const oclMat &mask)
{
string kernelName = mask.data ? "arithm_s_add_with_mask" : "arithm_s_add";
const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar;
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, 1);
arithmetic_run_generic(src1, oclMat(), src2, mask, dst, SUB);
}
void cv::ocl::subtract(const Scalar &src2, const oclMat &src1, oclMat &dst, const oclMat &mask)
void cv::ocl::multiply(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar)
{
string kernelName = mask.data ? "arithm_s_add_with_mask" : "arithm_s_add";
const char **kernelString = mask.data ? &arithm_add_scalar_mask : &arithm_add_scalar;
arithmetic_scalar( src1, src2, dst, mask, kernelName, kernelString, -1);
const bool use_scalar = !(std::abs(scalar - 1.0) < std::numeric_limits<double>::epsilon());
arithmetic_run_generic(src1, src2, Scalar::all(scalar), oclMat(), dst, MUL, use_scalar);
}
void cv::ocl::multiply(double scalar, const oclMat &src, oclMat &dst)
{
string kernelName = "arithm_muls";
arithmetic_scalar_run( src, dst, kernelName, &arithm_mul, scalar);
arithmetic_run_generic(src, oclMat(), Scalar::all(scalar), oclMat(), dst, MUL);
}
void cv::ocl::divide(double scalar, const oclMat &src, oclMat &dst)
{
if(!src.clCxt->supportsFeature(Context::CL_DOUBLE))
{
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
return;
}
string kernelName = "arithm_s_div";
arithmetic_scalar_run(src, dst, kernelName, &arithm_div, scalar);
void cv::ocl::divide(const oclMat &src1, const oclMat &src2, oclMat &dst, double scalar)
{
const bool use_scalar = !(std::abs(scalar - 1.0) < std::numeric_limits<double>::epsilon());
arithmetic_run_generic(src1, src2, Scalar::all(scalar), oclMat(), dst, DIV, use_scalar);
}
void cv::ocl::divide(double scalar, const oclMat &src, oclMat &dst)
{
arithmetic_run_generic(src, oclMat(), Scalar::all(scalar), oclMat(), dst, DIV);
}
//////////////////////////////////////////////////////////////////////////////
///////////////////////////////// Absdiff ///////////////////////////////////
//////////////////////////////////////////////////////////////////////////////
void cv::ocl::absdiff(const oclMat &src1, const oclMat &src2, oclMat &dst)
{
arithmetic_run(src1, src2, dst, "arithm_absdiff", &arithm_absdiff);
arithmetic_run_generic(src1, src2, Scalar(), oclMat(), dst, ABS_DIFF);
}
void cv::ocl::absdiff(const oclMat &src1, const Scalar &src2, oclMat &dst)
{
string kernelName = "arithm_s_absdiff";
oclMat mask;
arithmetic_scalar( src1, src2, dst, mask, kernelName, &arithm_absdiff);
arithmetic_run_generic(src1, oclMat(), src2, oclMat(), dst, ABS_DIFF);
}
//////////////////////////////////////////////////////////////////////////////
///////////////////////////////// compare ///////////////////////////////////
//////////////////////////////////////////////////////////////////////////////