OpenCV with the refactored features2d compiles! contrib is broken for now; the tests are not tried yet

This commit is contained in:
Vadim Pisarevsky
2014-10-15 22:49:17 +04:00
parent 2e915026a0
commit 09df1a286b
27 changed files with 1939 additions and 2316 deletions

View File

@@ -52,22 +52,15 @@ http://www.robesafe.com/personal/pablo.alcantarilla/papers/Alcantarilla13bmvc.pd
#include "kaze/AKAZEFeatures.h"
#include <iostream>
using namespace std;
namespace cv
{
AKAZE::AKAZE()
: descriptor(DESCRIPTOR_MLDB)
, descriptor_channels(3)
, descriptor_size(0)
, threshold(0.001f)
, octaves(4)
, sublevels(4)
, diffusivity(DIFF_PM_G2)
{
}
using namespace std;
AKAZE::AKAZE(int _descriptor_type, int _descriptor_size, int _descriptor_channels,
class AKAZE_Impl : public AKAZE
{
public:
AKAZE_Impl(int _descriptor_type, int _descriptor_size, int _descriptor_channels,
float _threshold, int _octaves, int _sublevels, int _diffusivity)
: descriptor(_descriptor_type)
, descriptor_channels(_descriptor_channels)
@@ -76,181 +69,139 @@ namespace cv
, octaves(_octaves)
, sublevels(_sublevels)
, diffusivity(_diffusivity)
{
}
AKAZE::~AKAZE()
{
}
// returns the descriptor size in bytes
int AKAZE::descriptorSize() const
{
switch (descriptor)
{
case cv::DESCRIPTOR_KAZE:
case cv::DESCRIPTOR_KAZE_UPRIGHT:
return 64;
case cv::DESCRIPTOR_MLDB:
case cv::DESCRIPTOR_MLDB_UPRIGHT:
// We use the full length binary descriptor -> 486 bits
if (descriptor_size == 0)
{
int t = (6 + 36 + 120) * descriptor_channels;
return (int)ceil(t / 8.);
}
else
{
// We use the random bit selection length binary descriptor
return (int)ceil(descriptor_size / 8.);
}
default:
return -1;
}
}
// returns the descriptor type
int AKAZE::descriptorType() const
{
switch (descriptor)
virtual ~AKAZE_Impl()
{
case cv::DESCRIPTOR_KAZE:
case cv::DESCRIPTOR_KAZE_UPRIGHT:
return CV_32F;
case cv::DESCRIPTOR_MLDB:
case cv::DESCRIPTOR_MLDB_UPRIGHT:
return CV_8U;
}
// returns the descriptor size in bytes
int descriptorSize() const
{
switch (descriptor)
{
case DESCRIPTOR_KAZE:
case DESCRIPTOR_KAZE_UPRIGHT:
return 64;
case DESCRIPTOR_MLDB:
case DESCRIPTOR_MLDB_UPRIGHT:
// We use the full length binary descriptor -> 486 bits
if (descriptor_size == 0)
{
int t = (6 + 36 + 120) * descriptor_channels;
return (int)ceil(t / 8.);
}
else
{
// We use the random bit selection length binary descriptor
return (int)ceil(descriptor_size / 8.);
}
default:
return -1;
}
}
}
// returns the default norm type
int AKAZE::defaultNorm() const
{
switch (descriptor)
// returns the descriptor type
int descriptorType() const
{
case cv::DESCRIPTOR_KAZE:
case cv::DESCRIPTOR_KAZE_UPRIGHT:
return cv::NORM_L2;
switch (descriptor)
{
case DESCRIPTOR_KAZE:
case DESCRIPTOR_KAZE_UPRIGHT:
return CV_32F;
case cv::DESCRIPTOR_MLDB:
case cv::DESCRIPTOR_MLDB_UPRIGHT:
return cv::NORM_HAMMING;
case DESCRIPTOR_MLDB:
case DESCRIPTOR_MLDB_UPRIGHT:
return CV_8U;
default:
return -1;
default:
return -1;
}
}
}
void AKAZE::operator()(InputArray image, InputArray mask,
std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
bool useProvidedKeypoints) const
{
cv::Mat img = image.getMat();
if (img.type() != CV_8UC1)
cvtColor(image, img, COLOR_BGR2GRAY);
Mat img1_32;
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
cv::Mat& desc = descriptors.getMatRef();
AKAZEOptions options;
options.descriptor = descriptor;
options.descriptor_channels = descriptor_channels;
options.descriptor_size = descriptor_size;
options.img_width = img.cols;
options.img_height = img.rows;
options.dthreshold = threshold;
options.omax = octaves;
options.nsublevels = sublevels;
options.diffusivity = diffusivity;
AKAZEFeatures impl(options);
impl.Create_Nonlinear_Scale_Space(img1_32);
if (!useProvidedKeypoints)
// returns the default norm type
int defaultNorm() const
{
impl.Feature_Detection(keypoints);
switch (descriptor)
{
case DESCRIPTOR_KAZE:
case DESCRIPTOR_KAZE_UPRIGHT:
return NORM_L2;
case DESCRIPTOR_MLDB:
case DESCRIPTOR_MLDB_UPRIGHT:
return NORM_HAMMING;
default:
return -1;
}
}
if (!mask.empty())
void detectAndCompute(InputArray image, InputArray mask,
std::vector<KeyPoint>& keypoints,
OutputArray descriptors,
bool useProvidedKeypoints)
{
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
Mat img = image.getMat();
if (img.type() != CV_8UC1)
cvtColor(image, img, COLOR_BGR2GRAY);
Mat img1_32;
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
AKAZEOptions options;
options.descriptor = descriptor;
options.descriptor_channels = descriptor_channels;
options.descriptor_size = descriptor_size;
options.img_width = img.cols;
options.img_height = img.rows;
options.dthreshold = threshold;
options.omax = octaves;
options.nsublevels = sublevels;
options.diffusivity = diffusivity;
AKAZEFeatures impl(options);
impl.Create_Nonlinear_Scale_Space(img1_32);
if (!useProvidedKeypoints)
{
impl.Feature_Detection(keypoints);
}
if (!mask.empty())
{
KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
}
if( descriptors.needed() )
{
Mat& desc = descriptors.getMatRef();
impl.Compute_Descriptors(keypoints, desc);
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
}
}
impl.Compute_Descriptors(keypoints, desc);
int descriptor;
int descriptor_channels;
int descriptor_size;
float threshold;
int octaves;
int sublevels;
int diffusivity;
};
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
}
void AKAZE::detectImpl(InputArray image, std::vector<KeyPoint>& keypoints, InputArray mask) const
Ptr<AKAZE> AKAZE::create(int descriptor_type,
int descriptor_size, int descriptor_channels,
float threshold, int octaves,
int sublevels, int diffusivity)
{
cv::Mat img = image.getMat();
if (img.type() != CV_8UC1)
cvtColor(image, img, COLOR_BGR2GRAY);
Mat img1_32;
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
AKAZEOptions options;
options.descriptor = descriptor;
options.descriptor_channels = descriptor_channels;
options.descriptor_size = descriptor_size;
options.img_width = img.cols;
options.img_height = img.rows;
options.dthreshold = threshold;
options.omax = octaves;
options.nsublevels = sublevels;
options.diffusivity = diffusivity;
AKAZEFeatures impl(options);
impl.Create_Nonlinear_Scale_Space(img1_32);
impl.Feature_Detection(keypoints);
if (!mask.empty())
{
cv::KeyPointsFilter::runByPixelsMask(keypoints, mask.getMat());
}
}
void AKAZE::computeImpl(InputArray image, std::vector<KeyPoint>& keypoints, OutputArray descriptors) const
{
cv::Mat img = image.getMat();
if (img.type() != CV_8UC1)
cvtColor(image, img, COLOR_BGR2GRAY);
Mat img1_32;
img.convertTo(img1_32, CV_32F, 1.0 / 255.0, 0);
cv::Mat& desc = descriptors.getMatRef();
AKAZEOptions options;
options.descriptor = descriptor;
options.descriptor_channels = descriptor_channels;
options.descriptor_size = descriptor_size;
options.img_width = img.cols;
options.img_height = img.rows;
options.dthreshold = threshold;
options.omax = octaves;
options.nsublevels = sublevels;
options.diffusivity = diffusivity;
AKAZEFeatures impl(options);
impl.Create_Nonlinear_Scale_Space(img1_32);
impl.Compute_Descriptors(keypoints, desc);
CV_Assert((!desc.rows || desc.cols == descriptorSize()));
CV_Assert((!desc.rows || (desc.type() == descriptorType())));
return makePtr<AKAZE_Impl>(descriptor_type, descriptor_size, descriptor_channels,
threshold, octaves, sublevels, diffusivity);
}
}