The samples were updated corresponding a single standart for <help>
This commit is contained in:
parent
262fc33024
commit
09a7a40478
@ -6,8 +6,14 @@
|
||||
|
||||
void help()
|
||||
{
|
||||
printf( "Usage:\n" ""
|
||||
"./convert_cascade --size=\"<width>x<height>\" input_cascade_path output_cascade_filename\n" );
|
||||
printf("\n This sample demonstrates cascade's convertation \n"
|
||||
"Usage:\n"
|
||||
"./convert_cascade --size=\"<width>x<height>\"<convertation size> \n"
|
||||
" input_cascade_path \n"
|
||||
" output_cascade_filename\n"
|
||||
"Example: \n"
|
||||
"./convert_cascade --size=640x480 ../../opencv/data/haarcascades/haarcascade_eye.xml ../../opencv/data/haarcascades/test_cascade.xml \n"
|
||||
);
|
||||
}
|
||||
|
||||
int main( int argc, char** argv )
|
||||
@ -17,6 +23,8 @@ int main( int argc, char** argv )
|
||||
CvHaarClassifierCascade* cascade = 0;
|
||||
CvSize size;
|
||||
|
||||
help();
|
||||
|
||||
if( argc != 4 || strncmp( argv[1], size_opt, strlen(size_opt) ) != 0 )
|
||||
{
|
||||
help();
|
||||
|
@ -7,8 +7,8 @@ void help()
|
||||
printf("\nThis program demostrates iterative construction of\n"
|
||||
"delaunay triangulation and voronoi tesselation.\n"
|
||||
"It draws a random set of points in an image and then delaunay triangulates them.\n"
|
||||
"Call:\n"
|
||||
"./delaunay\n"
|
||||
"Usage: \n"
|
||||
"./delaunay \n"
|
||||
"\nThis program builds the traingulation interactively, you may stop this process by\n"
|
||||
"hitting any key.\n");
|
||||
}
|
||||
|
@ -4,10 +4,10 @@
|
||||
void help()
|
||||
{
|
||||
printf(
|
||||
"This program demonstrate dense \"Farneback\n optical flow\n"
|
||||
"\n This program demonstrate dense \"Farneback\n optical flow\n"
|
||||
"It read from camera 0, and shows how to use and display dense Franeback optical flow\n"
|
||||
"Call:\n"
|
||||
"./fback_c\n\n");
|
||||
"Usage: \n"
|
||||
"./fback_c \n");
|
||||
|
||||
}
|
||||
void drawOptFlowMap(const CvMat* flow, CvMat* cflowmap, int step,
|
||||
|
@ -19,12 +19,14 @@ using namespace cv;
|
||||
|
||||
void help()
|
||||
{
|
||||
printf( "This program demonstrated the use of the SURF Detector and Descriptor using\n"
|
||||
printf( "\n This program demonstrated the use of the SURF Detector and Descriptor using\n"
|
||||
"either FLANN (fast approx nearst neighbor classification) or brute force matching\n"
|
||||
"on planar objects.\n"
|
||||
"Usage :\n"
|
||||
"Usage: \n"
|
||||
"./find_obj [--object_filename]=<object_filename, box.png as default> \n"
|
||||
" [--scene_filename]=<scene_filename box_in_scene.png as default>]\n\n"
|
||||
" [--scene_filename]=<scene_filename box_in_scene.png as default>] \n"
|
||||
"Example: \n"
|
||||
"./find_obj --object_filename =box.png --scene_filename = box_in_scene.png \n\n"
|
||||
);
|
||||
}
|
||||
|
||||
|
@ -14,9 +14,11 @@ void help()
|
||||
{
|
||||
printf( "This program shows the use of the \"fern\" plannar PlanarObjectDetector point\n"
|
||||
"descriptor classifier"
|
||||
"Usage:\n"
|
||||
"Usage: \n"
|
||||
"./find_obj_ferns [--object_filename]=<object_filename, box.png as default> \n"
|
||||
" [--scene_filename]=<scene_filename box_in_scene.png as default>] \n");
|
||||
" [--scene_filename]=<scene_filename box_in_scene.png as default>] \n"
|
||||
"Example: \n"
|
||||
"./find_obj_ferns --object_filename=box.png --scene_filename=box_in_scene.png \n");
|
||||
}
|
||||
|
||||
int main(int argc, const char** argv)
|
||||
|
@ -19,8 +19,10 @@ void help()
|
||||
"It reads in a trained object model and then uses that to detect the object in an image\n"
|
||||
"Usage: \n"
|
||||
"./latentsvmdetect [--image_filename]=<image_filename, cat.jpg as default> \n"
|
||||
" [--model_filename] = <model_filename, cat.xml as default> \n"
|
||||
" [--threads_number] = <number of threads, -1 as default>\n"
|
||||
" [--model_filename]=<model_filename, cat.xml as default> \n"
|
||||
" [--threads_number]=<number of threads, -1 as default>\n"
|
||||
"Example: \n"
|
||||
"./latentsvmdetect --image_filename=cat.jpg --model_filename=cat.xml --threads_number=7 \n"
|
||||
" Press any key to quit.\n");
|
||||
}
|
||||
|
||||
|
@ -58,24 +58,32 @@ void help()
|
||||
"Morphology operators are built on max (close) and min (open) operators as measured by pixels covered by small structuring elements.\n"
|
||||
"These operators are very efficient.\n"
|
||||
"This program also allows you to play with elliptical, rectangluar and cross structure elements\n"
|
||||
"Call:\n"
|
||||
"Usage: \n"
|
||||
"./morphologyc [image_name -- Default baboon.jpg]\n"
|
||||
"\nHot keys: \n"
|
||||
"\tESC - quit the program\n"
|
||||
"\tr - use rectangle structuring element\n"
|
||||
"\te - use elliptic structuring element\n"
|
||||
"\tc - use cross-shaped structuring element\n"
|
||||
"\tSPACE - loop through all the options\n" );
|
||||
"\tESC - quit the program\n"
|
||||
"\tr - use rectangle structuring element\n"
|
||||
"\te - use elliptic structuring element\n"
|
||||
"\tc - use cross-shaped structuring element\n"
|
||||
"\tSPACE - loop through all the options\n" );
|
||||
}
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
char* filename = argc == 2 ? argv[1] : (char*)"baboon.jpg";
|
||||
if( (src = cvLoadImage(filename,1)) == 0 )
|
||||
return -1;
|
||||
char* filename = 0;
|
||||
|
||||
help();
|
||||
|
||||
filename = argc == 2 ? argv[1] : (char*)"baboon.jpg";
|
||||
if( (src = cvLoadImage(filename,1)) == 0 )
|
||||
{
|
||||
printf("Cannot load file image %s\n", filename);
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
dst = cvCloneImage(src);
|
||||
|
||||
//create windows for output images
|
||||
|
@ -12,7 +12,7 @@ void help()
|
||||
"of thresholded layers of decaying frame differencing. New movements are stamped on top with floating system\n"
|
||||
"time code and motions too old are thresholded away. This is the 'motion history file'. The program reads from the camera of your choice or from\n"
|
||||
"a file. Gradients of motion history are used to detect direction of motoin etc\n"
|
||||
"Call:\n"
|
||||
"Usage :\n"
|
||||
"./motempl [camera number 0-n or file name, default is camera 0]\n"
|
||||
);
|
||||
}
|
||||
@ -160,7 +160,9 @@ int main(int argc, char** argv)
|
||||
{
|
||||
IplImage* motion = 0;
|
||||
CvCapture* capture = 0;
|
||||
|
||||
help();
|
||||
|
||||
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
|
||||
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
|
||||
else if( argc == 2 )
|
||||
|
@ -17,7 +17,9 @@ void help()
|
||||
printf("\nThis program demonstrates the Maximal Extremal Region interest point detector.\n"
|
||||
"It finds the most stable (in size) dark and white regions as a threshold is increased.\n"
|
||||
"\n Usage: \n"
|
||||
"./mser_sample [--image_filename] <path_and_image_filename, default is 'puzzle.png'> \n");
|
||||
"./mser_sample [--image_filename] <path_and_image_filename, default is 'puzzle.png'> \n"
|
||||
"Example: \n"
|
||||
"./mser_sample --image_filename=puzzle.png \n");
|
||||
}
|
||||
|
||||
static CvScalar colors[] =
|
||||
|
@ -5,20 +5,20 @@
|
||||
void help()
|
||||
{
|
||||
printf("\nThis program demonstrated the use of OpenCV's decision tree function for learning and predicting data\n"
|
||||
"Call:\n"
|
||||
"./mushroom <path to agaricus-lepiota.data>\n");
|
||||
printf("\n"
|
||||
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
|
||||
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
|
||||
"\n"
|
||||
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
|
||||
"UCI Repository of machine learning databases\n"
|
||||
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
|
||||
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
|
||||
"\n"
|
||||
"// loads the mushroom database, which is a text file, containing\n"
|
||||
"// one training sample per row, all the input variables and the output variable are categorical,\n"
|
||||
"// the values are encoded by characters.\n\n");
|
||||
"Usage :\n"
|
||||
"./mushroom <path to agaricus-lepiota.data>\n"
|
||||
"\n"
|
||||
"The sample demonstrates how to build a decision tree for classifying mushrooms.\n"
|
||||
"It uses the sample base agaricus-lepiota.data from UCI Repository, here is the link:\n"
|
||||
"\n"
|
||||
"Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).\n"
|
||||
"UCI Repository of machine learning databases\n"
|
||||
"[http://www.ics.uci.edu/~mlearn/MLRepository.html].\n"
|
||||
"Irvine, CA: University of California, Department of Information and Computer Science.\n"
|
||||
"\n"
|
||||
"// loads the mushroom database, which is a text file, containing\n"
|
||||
"// one training sample per row, all the input variables and the output variable are categorical,\n"
|
||||
"// the values are encoded by characters.\n\n");
|
||||
}
|
||||
|
||||
int mushroom_read_database( const char* filename, CvMat** data, CvMat** missing, CvMat** responses )
|
||||
@ -298,6 +298,8 @@ int main( int argc, char** argv )
|
||||
CvDTree* dtree;
|
||||
const char* base_path = argc >= 2 ? argv[1] : "agaricus-lepiota.data";
|
||||
|
||||
help();
|
||||
|
||||
if( !mushroom_read_database( base_path, &data, &missing, &responses ) )
|
||||
{
|
||||
printf( "\nUnable to load the training database\n\n");
|
||||
|
@ -9,7 +9,7 @@
|
||||
void help()
|
||||
{
|
||||
printf("\nThis program illustrates Linear-Polar and Log-Polar image transforms\n"
|
||||
"Call:\n"
|
||||
"Usage :\n"
|
||||
"./polar_transforms [[camera number -- Default 0],[AVI path_filename]]\n\n"
|
||||
);
|
||||
}
|
||||
@ -20,15 +20,17 @@ int main( int argc, char** argv )
|
||||
IplImage* lin_polar_img = 0;
|
||||
IplImage* recovered_img = 0;
|
||||
|
||||
help();
|
||||
|
||||
if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
|
||||
capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
|
||||
else if( argc == 2 )
|
||||
capture = cvCaptureFromAVI( argv[1] );
|
||||
help();
|
||||
if( !capture )
|
||||
{
|
||||
fprintf(stderr,"Could not initialize capturing...\n");
|
||||
fprintf(stderr,"Usage: %s <CAMERA_NUMBER> , or \n %s <VIDEO_FILE>\n",argv[0],argv[0]);
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
@ -7,7 +7,7 @@ void help()
|
||||
{
|
||||
printf("\nThis program demonstrated color pyramid segmentation cvcvPyrSegmentation() which is controlled\n"
|
||||
"by two trhesholds which can be manipulated by a trackbar. It can take an image file name or defaults to 'fruits.jpg'\n"
|
||||
"Call:\n"
|
||||
"Usage :\n"
|
||||
"./pyaramid_segmentation [image_path_filename -- Defaults to fruits.jpg]\n\n"
|
||||
);
|
||||
}
|
||||
@ -36,32 +36,24 @@ void ON_SEGMENT(int a)
|
||||
cvPyrSegmentation(image0, image1, storage, &comp,
|
||||
level, threshold1+1, threshold2+1);
|
||||
|
||||
/*l_comp = comp->total;
|
||||
|
||||
i = 0;
|
||||
min_comp.value = cvScalarAll(0);
|
||||
while(i<l_comp)
|
||||
{
|
||||
cur_comp = (CvConnectedComp*)cvGetSeqElem ( comp, i );
|
||||
if(fabs(255- min_comp.value.val[0])>
|
||||
fabs(255- cur_comp->value.val[0]) &&
|
||||
fabs(min_comp.value.val[1])>
|
||||
fabs(cur_comp->value.val[1]) &&
|
||||
fabs(min_comp.value.val[2])>
|
||||
fabs(cur_comp->value.val[2]) )
|
||||
min_comp = *cur_comp;
|
||||
i++;
|
||||
}*/
|
||||
cvShowImage("Segmentation", image1);
|
||||
}
|
||||
|
||||
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
char* filename = argc == 2 ? argv[1] : (char*)"fruits.jpg";
|
||||
char* filename;
|
||||
|
||||
help();
|
||||
|
||||
filename = argc == 2 ? argv[1] : (char*)"fruits.jpg";
|
||||
|
||||
if( (image[0] = cvLoadImage( filename, 1)) == 0 )
|
||||
{
|
||||
help();
|
||||
printf("Cannot load fileimage - %s\n", filename);
|
||||
return -1;
|
||||
}
|
||||
|
||||
cvNamedWindow("Source", 0);
|
||||
cvShowImage("Source", image[0]);
|
||||
|
Loading…
Reference in New Issue
Block a user