Update sample and code with external computation of HOG detector.
This commit is contained in:
parent
2fe340bf8a
commit
0934344a3d
@ -518,8 +518,7 @@ public:
|
|||||||
virtual CvSVMParams get_params() const { return params; };
|
virtual CvSVMParams get_params() const { return params; };
|
||||||
CV_WRAP virtual void clear();
|
CV_WRAP virtual void clear();
|
||||||
|
|
||||||
// return a single vector for HOG detector.
|
virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; }
|
||||||
virtual void get_svm_detector( std::vector< float > & detector ) const;
|
|
||||||
|
|
||||||
static CvParamGrid get_default_grid( int param_id );
|
static CvParamGrid get_default_grid( int param_id );
|
||||||
|
|
||||||
|
@ -1245,38 +1245,6 @@ const float* CvSVM::get_support_vector(int i) const
|
|||||||
return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0;
|
return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CvSVM::get_svm_detector( std::vector< float > & detector ) const
|
|
||||||
{
|
|
||||||
CV_Assert( var_all > 0 &&
|
|
||||||
sv_total > 0 &&
|
|
||||||
sv != 0 &&
|
|
||||||
decision_func != 0 &&
|
|
||||||
decision_func->alpha != 0 &&
|
|
||||||
decision_func->sv_count == sv_total );
|
|
||||||
float svi = 0.f;
|
|
||||||
|
|
||||||
detector.clear(); //clear stuff in vector.
|
|
||||||
detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
|
||||||
|
|
||||||
/**
|
|
||||||
* detector^i = \sum_j support_vector_j^i * \alpha_j
|
|
||||||
* detector^dim = -\rho
|
|
||||||
*/
|
|
||||||
for( int i = 0 ; i < var_all ; ++i )
|
|
||||||
{
|
|
||||||
svi = 0.f;
|
|
||||||
for( int j = 0 ; j < sv_total ; ++j )
|
|
||||||
{
|
|
||||||
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
|
||||||
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
|
|
||||||
else
|
|
||||||
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
|
|
||||||
}
|
|
||||||
detector.push_back( svi );
|
|
||||||
}
|
|
||||||
detector.push_back( (float)-decision_func->rho );
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CvSVM::set_params( const CvSVMParams& _params )
|
bool CvSVM::set_params( const CvSVMParams& _params )
|
||||||
{
|
{
|
||||||
bool ok = false;
|
bool ok = false;
|
||||||
|
@ -11,22 +11,64 @@ using namespace cv;
|
|||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
|
|
||||||
|
void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
|
||||||
|
{
|
||||||
|
// get the number of variables
|
||||||
|
const int var_all = svm.get_var_count();
|
||||||
|
// get the number of support vectors
|
||||||
|
const int sv_total = svm.get_support_vector_count();
|
||||||
|
// get the decision function
|
||||||
|
const CvSVMDecisionFunc* decision_func = svm.get_decision_function();
|
||||||
|
// get the support vectors
|
||||||
|
const float** sv = &(svm.get_support_vector(0));
|
||||||
|
|
||||||
|
CV_Assert( var_all > 0 &&
|
||||||
|
sv_total > 0 &&
|
||||||
|
decision_func != 0 &&
|
||||||
|
decision_func->alpha != 0 &&
|
||||||
|
decision_func->sv_count == sv_total );
|
||||||
|
|
||||||
|
float svi = 0.f;
|
||||||
|
|
||||||
|
hog_detector.clear(); //clear stuff in vector.
|
||||||
|
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j
|
||||||
|
* hog_detector^dim = -\rho
|
||||||
|
*/
|
||||||
|
for( int i = 0 ; i < var_all ; ++i )
|
||||||
|
{
|
||||||
|
svi = 0.f;
|
||||||
|
for( int j = 0 ; j < sv_total ; ++j )
|
||||||
|
{
|
||||||
|
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
||||||
|
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
|
||||||
|
else
|
||||||
|
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
|
||||||
|
}
|
||||||
|
hog_detector.push_back( svi );
|
||||||
|
}
|
||||||
|
hog_detector.push_back( (float)-decision_func->rho );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
|
||||||
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
|
||||||
* Transposition of samples are made if needed.
|
* Transposition of samples are made if needed.
|
||||||
*/
|
*/
|
||||||
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
|
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
|
||||||
{
|
{
|
||||||
//--Convert data
|
//--Convert data
|
||||||
const int rows = (int)train_samples.size();
|
const int rows = (int)train_samples.size();
|
||||||
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
|
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
|
||||||
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
|
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
|
||||||
trainData = cv::Mat(rows, cols, CV_32FC1 );
|
trainData = cv::Mat(rows, cols, CV_32FC1 );
|
||||||
auto& itr = train_samples.begin();
|
auto& itr = train_samples.begin();
|
||||||
auto& end = train_samples.end();
|
auto& end = train_samples.end();
|
||||||
for( int i = 0 ; itr != end ; ++itr, ++i )
|
for( int i = 0 ; itr != end ; ++itr, ++i )
|
||||||
{
|
{
|
||||||
CV_Assert( itr->cols == 1 ||
|
CV_Assert( itr->cols == 1 ||
|
||||||
itr->rows == 1 );
|
itr->rows == 1 );
|
||||||
if( itr->cols == 1 )
|
if( itr->cols == 1 )
|
||||||
@ -38,7 +80,7 @@ void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainD
|
|||||||
{
|
{
|
||||||
itr->copyTo( trainData.row( i ) );
|
itr->copyTo( trainData.row( i ) );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
|
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
|
||||||
@ -52,7 +94,7 @@ void load_images( const string & prefix, const string & filename, vector< Mat >
|
|||||||
cerr << "Unable to open the list of images from " << filename << " filename." << endl;
|
cerr << "Unable to open the list of images from " << filename << " filename." << endl;
|
||||||
exit( -1 );
|
exit( -1 );
|
||||||
}
|
}
|
||||||
|
|
||||||
while( 1 )
|
while( 1 )
|
||||||
{
|
{
|
||||||
getline( file, line );
|
getline( file, line );
|
||||||
@ -102,12 +144,12 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
|||||||
float zoomFac = 3;
|
float zoomFac = 3;
|
||||||
Mat visu;
|
Mat visu;
|
||||||
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac));
|
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac));
|
||||||
|
|
||||||
int blockSize = 16;
|
int blockSize = 16;
|
||||||
int cellSize = 8;
|
int cellSize = 8;
|
||||||
int gradientBinSize = 9;
|
int gradientBinSize = 9;
|
||||||
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180° into 9 bins, how large (in rad) is one bin?
|
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180° into 9 bins, how large (in rad) is one bin?
|
||||||
|
|
||||||
// prepare data structure: 9 orientation / gradient strenghts for each cell
|
// prepare data structure: 9 orientation / gradient strenghts for each cell
|
||||||
int cells_in_x_dir = DIMX / cellSize;
|
int cells_in_x_dir = DIMX / cellSize;
|
||||||
int cells_in_y_dir = DIMY / cellSize;
|
int cells_in_y_dir = DIMY / cellSize;
|
||||||
@ -122,22 +164,22 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
|||||||
{
|
{
|
||||||
gradientStrengths[y][x] = new float[gradientBinSize];
|
gradientStrengths[y][x] = new float[gradientBinSize];
|
||||||
cellUpdateCounter[y][x] = 0;
|
cellUpdateCounter[y][x] = 0;
|
||||||
|
|
||||||
for (int bin=0; bin<gradientBinSize; bin++)
|
for (int bin=0; bin<gradientBinSize; bin++)
|
||||||
gradientStrengths[y][x][bin] = 0.0;
|
gradientStrengths[y][x][bin] = 0.0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// nr of blocks = nr of cells - 1
|
// nr of blocks = nr of cells - 1
|
||||||
// since there is a new block on each cell (overlapping blocks!) but the last one
|
// since there is a new block on each cell (overlapping blocks!) but the last one
|
||||||
int blocks_in_x_dir = cells_in_x_dir - 1;
|
int blocks_in_x_dir = cells_in_x_dir - 1;
|
||||||
int blocks_in_y_dir = cells_in_y_dir - 1;
|
int blocks_in_y_dir = cells_in_y_dir - 1;
|
||||||
|
|
||||||
// compute gradient strengths per cell
|
// compute gradient strengths per cell
|
||||||
int descriptorDataIdx = 0;
|
int descriptorDataIdx = 0;
|
||||||
int cellx = 0;
|
int cellx = 0;
|
||||||
int celly = 0;
|
int celly = 0;
|
||||||
|
|
||||||
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
|
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
|
||||||
{
|
{
|
||||||
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
|
||||||
@ -155,37 +197,37 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
|||||||
cellx++;
|
cellx++;
|
||||||
celly++;
|
celly++;
|
||||||
}
|
}
|
||||||
|
|
||||||
for (int bin=0; bin<gradientBinSize; bin++)
|
for (int bin=0; bin<gradientBinSize; bin++)
|
||||||
{
|
{
|
||||||
float gradientStrength = descriptorValues[ descriptorDataIdx ];
|
float gradientStrength = descriptorValues[ descriptorDataIdx ];
|
||||||
descriptorDataIdx++;
|
descriptorDataIdx++;
|
||||||
|
|
||||||
gradientStrengths[celly][cellx][bin] += gradientStrength;
|
gradientStrengths[celly][cellx][bin] += gradientStrength;
|
||||||
|
|
||||||
} // for (all bins)
|
} // for (all bins)
|
||||||
|
|
||||||
|
|
||||||
// note: overlapping blocks lead to multiple updates of this sum!
|
// note: overlapping blocks lead to multiple updates of this sum!
|
||||||
// we therefore keep track how often a cell was updated,
|
// we therefore keep track how often a cell was updated,
|
||||||
// to compute average gradient strengths
|
// to compute average gradient strengths
|
||||||
cellUpdateCounter[celly][cellx]++;
|
cellUpdateCounter[celly][cellx]++;
|
||||||
|
|
||||||
} // for (all cells)
|
} // for (all cells)
|
||||||
|
|
||||||
|
|
||||||
} // for (all block x pos)
|
} // for (all block x pos)
|
||||||
} // for (all block y pos)
|
} // for (all block y pos)
|
||||||
|
|
||||||
|
|
||||||
// compute average gradient strengths
|
// compute average gradient strengths
|
||||||
for (int celly=0; celly<cells_in_y_dir; celly++)
|
for (int celly=0; celly<cells_in_y_dir; celly++)
|
||||||
{
|
{
|
||||||
for (int cellx=0; cellx<cells_in_x_dir; cellx++)
|
for (int cellx=0; cellx<cells_in_x_dir; cellx++)
|
||||||
{
|
{
|
||||||
|
|
||||||
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
|
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
|
||||||
|
|
||||||
// compute average gradient strenghts for each gradient bin direction
|
// compute average gradient strenghts for each gradient bin direction
|
||||||
for (int bin=0; bin<gradientBinSize; bin++)
|
for (int bin=0; bin<gradientBinSize; bin++)
|
||||||
{
|
{
|
||||||
@ -193,7 +235,7 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// draw cells
|
// draw cells
|
||||||
for (int celly=0; celly<cells_in_y_dir; celly++)
|
for (int celly=0; celly<cells_in_y_dir; celly++)
|
||||||
{
|
{
|
||||||
@ -201,58 +243,58 @@ Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues,
|
|||||||
{
|
{
|
||||||
int drawX = cellx * cellSize;
|
int drawX = cellx * cellSize;
|
||||||
int drawY = celly * cellSize;
|
int drawY = celly * cellSize;
|
||||||
|
|
||||||
int mx = drawX + cellSize/2;
|
int mx = drawX + cellSize/2;
|
||||||
int my = drawY + cellSize/2;
|
int my = drawY + cellSize/2;
|
||||||
|
|
||||||
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1);
|
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1);
|
||||||
|
|
||||||
// draw in each cell all 9 gradient strengths
|
// draw in each cell all 9 gradient strengths
|
||||||
for (int bin=0; bin<gradientBinSize; bin++)
|
for (int bin=0; bin<gradientBinSize; bin++)
|
||||||
{
|
{
|
||||||
float currentGradStrength = gradientStrengths[celly][cellx][bin];
|
float currentGradStrength = gradientStrengths[celly][cellx][bin];
|
||||||
|
|
||||||
// no line to draw?
|
// no line to draw?
|
||||||
if (currentGradStrength==0)
|
if (currentGradStrength==0)
|
||||||
continue;
|
continue;
|
||||||
|
|
||||||
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
|
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
|
||||||
|
|
||||||
float dirVecX = cos( currRad );
|
float dirVecX = cos( currRad );
|
||||||
float dirVecY = sin( currRad );
|
float dirVecY = sin( currRad );
|
||||||
float maxVecLen = cellSize/2;
|
float maxVecLen = cellSize/2;
|
||||||
float scale = 2.5; // just a visualization scale, to see the lines better
|
float scale = 2.5; // just a visualization scale, to see the lines better
|
||||||
|
|
||||||
// compute line coordinates
|
// compute line coordinates
|
||||||
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
|
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
|
||||||
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
|
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
|
||||||
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
|
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
|
||||||
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
|
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
|
||||||
|
|
||||||
// draw gradient visualization
|
// draw gradient visualization
|
||||||
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1);
|
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1);
|
||||||
|
|
||||||
} // for (all bins)
|
} // for (all bins)
|
||||||
|
|
||||||
} // for (cellx)
|
} // for (cellx)
|
||||||
} // for (celly)
|
} // for (celly)
|
||||||
|
|
||||||
|
|
||||||
// don't forget to free memory allocated by helper data structures!
|
// don't forget to free memory allocated by helper data structures!
|
||||||
for (int y=0; y<cells_in_y_dir; y++)
|
for (int y=0; y<cells_in_y_dir; y++)
|
||||||
{
|
{
|
||||||
for (int x=0; x<cells_in_x_dir; x++)
|
for (int x=0; x<cells_in_x_dir; x++)
|
||||||
{
|
{
|
||||||
delete[] gradientStrengths[y][x];
|
delete[] gradientStrengths[y][x];
|
||||||
}
|
}
|
||||||
delete[] gradientStrengths[y];
|
delete[] gradientStrengths[y];
|
||||||
delete[] cellUpdateCounter[y];
|
delete[] cellUpdateCounter[y];
|
||||||
}
|
}
|
||||||
delete[] gradientStrengths;
|
delete[] gradientStrengths;
|
||||||
delete[] cellUpdateCounter;
|
delete[] cellUpdateCounter;
|
||||||
|
|
||||||
return visu;
|
return visu;
|
||||||
|
|
||||||
} // get_hogdescriptor_visu
|
} // get_hogdescriptor_visu
|
||||||
|
|
||||||
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
|
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
|
||||||
@ -322,7 +364,7 @@ void test_it( const Size & size )
|
|||||||
Scalar reference( 0, 255, 0 );
|
Scalar reference( 0, 255, 0 );
|
||||||
Scalar trained( 0, 0, 255 );
|
Scalar trained( 0, 0, 255 );
|
||||||
Mat img, draw;
|
Mat img, draw;
|
||||||
SVM svm;
|
MySVM svm;
|
||||||
HOGDescriptor hog;
|
HOGDescriptor hog;
|
||||||
HOGDescriptor my_hog;
|
HOGDescriptor my_hog;
|
||||||
my_hog.winSize = size;
|
my_hog.winSize = size;
|
||||||
@ -333,7 +375,7 @@ void test_it( const Size & size )
|
|||||||
svm.load( "my_people_detector.yml" );
|
svm.load( "my_people_detector.yml" );
|
||||||
// Set the trained svm to my_hog
|
// Set the trained svm to my_hog
|
||||||
vector< float > hog_detector;
|
vector< float > hog_detector;
|
||||||
svm.get_svm_detector( hog_detector );
|
get_svm_detector( svm, hog_detector );
|
||||||
my_hog.setSVMDetector( hog_detector );
|
my_hog.setSVMDetector( hog_detector );
|
||||||
// Set the people detector.
|
// Set the people detector.
|
||||||
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
|
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
|
||||||
@ -344,7 +386,7 @@ void test_it( const Size & size )
|
|||||||
cerr << "Unable to open the device 0" << endl;
|
cerr << "Unable to open the device 0" << endl;
|
||||||
exit( -1 );
|
exit( -1 );
|
||||||
}
|
}
|
||||||
|
|
||||||
while( true )
|
while( true )
|
||||||
{
|
{
|
||||||
video >> img;
|
video >> img;
|
||||||
@ -352,7 +394,7 @@ void test_it( const Size & size )
|
|||||||
break;
|
break;
|
||||||
|
|
||||||
draw = img.clone();
|
draw = img.clone();
|
||||||
|
|
||||||
locations.clear();
|
locations.clear();
|
||||||
hog.detectMultiScale( img, locations );
|
hog.detectMultiScale( img, locations );
|
||||||
draw_locations( draw, locations, reference );
|
draw_locations( draw, locations, reference );
|
||||||
@ -373,8 +415,8 @@ int main( int argc, char** argv )
|
|||||||
if( argc != 4 )
|
if( argc != 4 )
|
||||||
{
|
{
|
||||||
cout << "Wrong number of parameters." << endl
|
cout << "Wrong number of parameters." << endl
|
||||||
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl
|
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl
|
||||||
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl;
|
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl;
|
||||||
exit( -1 );
|
exit( -1 );
|
||||||
}
|
}
|
||||||
vector< Mat > pos_lst;
|
vector< Mat > pos_lst;
|
||||||
|
Loading…
x
Reference in New Issue
Block a user