Update sample and code with external computation of HOG detector.
This commit is contained in:
parent
2fe340bf8a
commit
0934344a3d
@ -518,8 +518,7 @@ public:
|
|||||||
virtual CvSVMParams get_params() const { return params; };
|
virtual CvSVMParams get_params() const { return params; };
|
||||||
CV_WRAP virtual void clear();
|
CV_WRAP virtual void clear();
|
||||||
|
|
||||||
// return a single vector for HOG detector.
|
virtual const CvSVMDecisionFunc* get_decision_function() const { return decision_func; }
|
||||||
virtual void get_svm_detector( std::vector< float > & detector ) const;
|
|
||||||
|
|
||||||
static CvParamGrid get_default_grid( int param_id );
|
static CvParamGrid get_default_grid( int param_id );
|
||||||
|
|
||||||
|
@ -1245,38 +1245,6 @@ const float* CvSVM::get_support_vector(int i) const
|
|||||||
return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0;
|
return sv && (unsigned)i < (unsigned)sv_total ? sv[i] : 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
void CvSVM::get_svm_detector( std::vector< float > & detector ) const
|
|
||||||
{
|
|
||||||
CV_Assert( var_all > 0 &&
|
|
||||||
sv_total > 0 &&
|
|
||||||
sv != 0 &&
|
|
||||||
decision_func != 0 &&
|
|
||||||
decision_func->alpha != 0 &&
|
|
||||||
decision_func->sv_count == sv_total );
|
|
||||||
float svi = 0.f;
|
|
||||||
|
|
||||||
detector.clear(); //clear stuff in vector.
|
|
||||||
detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
|
||||||
|
|
||||||
/**
|
|
||||||
* detector^i = \sum_j support_vector_j^i * \alpha_j
|
|
||||||
* detector^dim = -\rho
|
|
||||||
*/
|
|
||||||
for( int i = 0 ; i < var_all ; ++i )
|
|
||||||
{
|
|
||||||
svi = 0.f;
|
|
||||||
for( int j = 0 ; j < sv_total ; ++j )
|
|
||||||
{
|
|
||||||
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
|
||||||
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
|
|
||||||
else
|
|
||||||
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
|
|
||||||
}
|
|
||||||
detector.push_back( svi );
|
|
||||||
}
|
|
||||||
detector.push_back( (float)-decision_func->rho );
|
|
||||||
}
|
|
||||||
|
|
||||||
bool CvSVM::set_params( const CvSVMParams& _params )
|
bool CvSVM::set_params( const CvSVMParams& _params )
|
||||||
{
|
{
|
||||||
bool ok = false;
|
bool ok = false;
|
||||||
|
@ -11,6 +11,48 @@ using namespace cv;
|
|||||||
using namespace std;
|
using namespace std;
|
||||||
|
|
||||||
|
|
||||||
|
void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
|
||||||
|
{
|
||||||
|
// get the number of variables
|
||||||
|
const int var_all = svm.get_var_count();
|
||||||
|
// get the number of support vectors
|
||||||
|
const int sv_total = svm.get_support_vector_count();
|
||||||
|
// get the decision function
|
||||||
|
const CvSVMDecisionFunc* decision_func = svm.get_decision_function();
|
||||||
|
// get the support vectors
|
||||||
|
const float** sv = &(svm.get_support_vector(0));
|
||||||
|
|
||||||
|
CV_Assert( var_all > 0 &&
|
||||||
|
sv_total > 0 &&
|
||||||
|
decision_func != 0 &&
|
||||||
|
decision_func->alpha != 0 &&
|
||||||
|
decision_func->sv_count == sv_total );
|
||||||
|
|
||||||
|
float svi = 0.f;
|
||||||
|
|
||||||
|
hog_detector.clear(); //clear stuff in vector.
|
||||||
|
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
|
||||||
|
|
||||||
|
/**
|
||||||
|
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j
|
||||||
|
* hog_detector^dim = -\rho
|
||||||
|
*/
|
||||||
|
for( int i = 0 ; i < var_all ; ++i )
|
||||||
|
{
|
||||||
|
svi = 0.f;
|
||||||
|
for( int j = 0 ; j < sv_total ; ++j )
|
||||||
|
{
|
||||||
|
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
|
||||||
|
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
|
||||||
|
else
|
||||||
|
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
|
||||||
|
}
|
||||||
|
hog_detector.push_back( svi );
|
||||||
|
}
|
||||||
|
hog_detector.push_back( (float)-decision_func->rho );
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
|
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
|
||||||
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
|
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
|
||||||
@ -322,7 +364,7 @@ void test_it( const Size & size )
|
|||||||
Scalar reference( 0, 255, 0 );
|
Scalar reference( 0, 255, 0 );
|
||||||
Scalar trained( 0, 0, 255 );
|
Scalar trained( 0, 0, 255 );
|
||||||
Mat img, draw;
|
Mat img, draw;
|
||||||
SVM svm;
|
MySVM svm;
|
||||||
HOGDescriptor hog;
|
HOGDescriptor hog;
|
||||||
HOGDescriptor my_hog;
|
HOGDescriptor my_hog;
|
||||||
my_hog.winSize = size;
|
my_hog.winSize = size;
|
||||||
@ -333,7 +375,7 @@ void test_it( const Size & size )
|
|||||||
svm.load( "my_people_detector.yml" );
|
svm.load( "my_people_detector.yml" );
|
||||||
// Set the trained svm to my_hog
|
// Set the trained svm to my_hog
|
||||||
vector< float > hog_detector;
|
vector< float > hog_detector;
|
||||||
svm.get_svm_detector( hog_detector );
|
get_svm_detector( svm, hog_detector );
|
||||||
my_hog.setSVMDetector( hog_detector );
|
my_hog.setSVMDetector( hog_detector );
|
||||||
// Set the people detector.
|
// Set the people detector.
|
||||||
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
|
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
|
||||||
|
Loading…
x
Reference in New Issue
Block a user