refactored video module; use the new-style algorithms now

This commit is contained in:
Vadim Pisarevsky
2013-03-20 19:51:49 +04:00
parent 14a0abbfa9
commit 07e0f7bf59
28 changed files with 1113 additions and 2270 deletions

View File

@@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@@ -40,285 +41,156 @@
//M*/
#include "precomp.hpp"
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvMeanShift
// Purpose: MeanShift algorithm
// Context:
// Parameters:
// imgProb - 2D object probability distribution
// windowIn - CvRect of CAMSHIFT Window intial size
// numIters - If CAMSHIFT iterates this many times, stop
// windowOut - Location, height and width of converged CAMSHIFT window
// len - If != NULL, return equivalent len
// width - If != NULL, return equivalent width
// Returns:
// Number of iterations CAMSHIFT took to converge
// Notes:
//F*/
CV_IMPL int
cvMeanShift( const void* imgProb, CvRect windowIn,
CvTermCriteria criteria, CvConnectedComp* comp )
int cv::meanShift( InputArray _probImage, Rect& window, TermCriteria criteria )
{
CvMoments moments;
int i = 0, eps;
CvMat stub, *mat = (CvMat*)imgProb;
CvMat cur_win;
CvRect cur_rect = windowIn;
Mat mat = _probImage.getMat();
Rect cur_rect = window;
if( comp )
comp->rect = windowIn;
CV_Assert( mat.channels() == 1 );
moments.m00 = moments.m10 = moments.m01 = 0;
mat = cvGetMat( mat, &stub );
if( CV_MAT_CN( mat->type ) > 1 )
CV_Error( CV_BadNumChannels, cvUnsupportedFormat );
if( windowIn.height <= 0 || windowIn.width <= 0 )
if( window.height <= 0 || window.width <= 0 )
CV_Error( CV_StsBadArg, "Input window has non-positive sizes" );
windowIn = cv::Rect(windowIn) & cv::Rect(0, 0, mat->cols, mat->rows);
window = window & Rect(0, 0, mat.cols, mat.rows);
criteria = cvCheckTermCriteria( criteria, 1., 100 );
eps = cvRound( criteria.epsilon * criteria.epsilon );
double eps = (criteria.type & TermCriteria::EPS) ? std::max(criteria.epsilon, 0.) : 1.;
eps = cvRound(eps*eps);
int i, niters = (criteria.type & TermCriteria::MAX_ITER) ? std::max(criteria.maxCount, 1) : 100;
for( i = 0; i < criteria.max_iter; i++ )
for( i = 0; i < niters; i++ )
{
int dx, dy, nx, ny;
double inv_m00;
cur_rect = cv::Rect(cur_rect) & cv::Rect(0, 0, mat->cols, mat->rows);
if( cv::Rect(cur_rect) == cv::Rect() )
cur_rect = cur_rect & Rect(0, 0, mat.cols, mat.rows);
if( cur_rect == Rect() )
{
cur_rect.x = mat->cols/2;
cur_rect.y = mat->rows/2;
cur_rect.x = mat.cols/2;
cur_rect.y = mat.rows/2;
}
cur_rect.width = MAX(cur_rect.width, 1);
cur_rect.height = MAX(cur_rect.height, 1);
cur_rect.width = std::max(cur_rect.width, 1);
cur_rect.height = std::max(cur_rect.height, 1);
cvGetSubRect( mat, &cur_win, cur_rect );
cvMoments( &cur_win, &moments );
Moments m = moments(mat(cur_rect));
/* Calculating center of mass */
if( fabs(moments.m00) < DBL_EPSILON )
// Calculating center of mass
if( fabs(m.m00) < DBL_EPSILON )
break;
inv_m00 = moments.inv_sqrt_m00*moments.inv_sqrt_m00;
dx = cvRound( moments.m10 * inv_m00 - windowIn.width*0.5 );
dy = cvRound( moments.m01 * inv_m00 - windowIn.height*0.5 );
int dx = cvRound( m.m10/m.m00 - window.width*0.5 );
int dy = cvRound( m.m01/m.m00 - window.height*0.5 );
nx = cur_rect.x + dx;
ny = cur_rect.y + dy;
if( nx < 0 )
nx = 0;
else if( nx + cur_rect.width > mat->cols )
nx = mat->cols - cur_rect.width;
if( ny < 0 )
ny = 0;
else if( ny + cur_rect.height > mat->rows )
ny = mat->rows - cur_rect.height;
int nx = std::min(std::max(cur_rect.x + dx, 0), mat.cols - cur_rect.width);
int ny = std::min(std::max(cur_rect.y + dy, 0), mat.rows - cur_rect.height);
dx = nx - cur_rect.x;
dy = ny - cur_rect.y;
cur_rect.x = nx;
cur_rect.y = ny;
/* Check for coverage centers mass & window */
// Check for coverage centers mass & window
if( dx*dx + dy*dy < eps )
break;
}
if( comp )
{
comp->rect = cur_rect;
comp->area = (float)moments.m00;
}
window = cur_rect;
return i;
}
/*F///////////////////////////////////////////////////////////////////////////////////////
// Name: cvCamShift
// Purpose: CAMSHIFT algorithm
// Context:
// Parameters:
// imgProb - 2D object probability distribution
// windowIn - CvRect of CAMSHIFT Window intial size
// criteria - criteria of stop finding window
// windowOut - Location, height and width of converged CAMSHIFT window
// orientation - If != NULL, return distribution orientation
// len - If != NULL, return equivalent len
// width - If != NULL, return equivalent width
// area - sum of all elements in result window
// Returns:
// Number of iterations CAMSHIFT took to converge
// Notes:
//F*/
CV_IMPL int
cvCamShift( const void* imgProb, CvRect windowIn,
CvTermCriteria criteria,
CvConnectedComp* _comp,
CvBox2D* box )
{
const int TOLERANCE = 10;
CvMoments moments;
double m00 = 0, m10, m01, mu20, mu11, mu02, inv_m00;
double a, b, c, xc, yc;
double rotate_a, rotate_c;
double theta = 0, square;
double cs, sn;
double length = 0, width = 0;
int itersUsed = 0;
CvConnectedComp comp;
CvMat cur_win, stub, *mat = (CvMat*)imgProb;
comp.rect = windowIn;
mat = cvGetMat( mat, &stub );
itersUsed = cvMeanShift( mat, windowIn, criteria, &comp );
windowIn = comp.rect;
windowIn.x -= TOLERANCE;
if( windowIn.x < 0 )
windowIn.x = 0;
windowIn.y -= TOLERANCE;
if( windowIn.y < 0 )
windowIn.y = 0;
windowIn.width += 2 * TOLERANCE;
if( windowIn.x + windowIn.width > mat->width )
windowIn.width = mat->width - windowIn.x;
windowIn.height += 2 * TOLERANCE;
if( windowIn.y + windowIn.height > mat->height )
windowIn.height = mat->height - windowIn.y;
cvGetSubRect( mat, &cur_win, windowIn );
/* Calculating moments in new center mass */
cvMoments( &cur_win, &moments );
m00 = moments.m00;
m10 = moments.m10;
m01 = moments.m01;
mu11 = moments.mu11;
mu20 = moments.mu20;
mu02 = moments.mu02;
if( fabs(m00) < DBL_EPSILON )
return -1;
inv_m00 = 1. / m00;
xc = cvRound( m10 * inv_m00 + windowIn.x );
yc = cvRound( m01 * inv_m00 + windowIn.y );
a = mu20 * inv_m00;
b = mu11 * inv_m00;
c = mu02 * inv_m00;
/* Calculating width & height */
square = sqrt( 4 * b * b + (a - c) * (a - c) );
/* Calculating orientation */
theta = atan2( 2 * b, a - c + square );
/* Calculating width & length of figure */
cs = cos( theta );
sn = sin( theta );
rotate_a = cs * cs * mu20 + 2 * cs * sn * mu11 + sn * sn * mu02;
rotate_c = sn * sn * mu20 - 2 * cs * sn * mu11 + cs * cs * mu02;
length = sqrt( rotate_a * inv_m00 ) * 4;
width = sqrt( rotate_c * inv_m00 ) * 4;
/* In case, when tetta is 0 or 1.57... the Length & Width may be exchanged */
if( length < width )
{
double t;
CV_SWAP( length, width, t );
CV_SWAP( cs, sn, t );
theta = CV_PI*0.5 - theta;
}
/* Saving results */
if( _comp || box )
{
int t0, t1;
int _xc = cvRound( xc );
int _yc = cvRound( yc );
t0 = cvRound( fabs( length * cs ));
t1 = cvRound( fabs( width * sn ));
t0 = MAX( t0, t1 ) + 2;
comp.rect.width = MIN( t0, (mat->width - _xc) * 2 );
t0 = cvRound( fabs( length * sn ));
t1 = cvRound( fabs( width * cs ));
t0 = MAX( t0, t1 ) + 2;
comp.rect.height = MIN( t0, (mat->height - _yc) * 2 );
comp.rect.x = MAX( 0, _xc - comp.rect.width / 2 );
comp.rect.y = MAX( 0, _yc - comp.rect.height / 2 );
comp.rect.width = MIN( mat->width - comp.rect.x, comp.rect.width );
comp.rect.height = MIN( mat->height - comp.rect.y, comp.rect.height );
comp.area = (float) m00;
}
if( _comp )
*_comp = comp;
if( box )
{
box->size.height = (float)length;
box->size.width = (float)width;
box->angle = (float)((CV_PI*0.5+theta)*180./CV_PI);
while(box->angle < 0)
box->angle += 360;
while(box->angle >= 360)
box->angle -= 360;
if(box->angle >= 180)
box->angle -= 180;
box->center = cvPoint2D32f( comp.rect.x + comp.rect.width*0.5f,
comp.rect.y + comp.rect.height*0.5f);
}
return itersUsed;
}
cv::RotatedRect cv::CamShift( InputArray _probImage, Rect& window,
TermCriteria criteria )
{
CvConnectedComp comp;
CvBox2D box;
const int TOLERANCE = 10;
Mat mat = _probImage.getMat();
box.center.x = box.center.y = 0; box.angle = 0; box.size.width = box.size.height = 0;
comp.rect.x = comp.rect.y = comp.rect.width = comp.rect.height = 0;
meanShift( mat, window, criteria );
Mat probImage = _probImage.getMat();
CvMat c_probImage = probImage;
cvCamShift(&c_probImage, window, (CvTermCriteria)criteria, &comp, &box);
window = comp.rect;
return RotatedRect(Point2f(box.center), Size2f(box.size), box.angle);
}
window.x -= TOLERANCE;
if( window.x < 0 )
window.x = 0;
int cv::meanShift( InputArray _probImage, Rect& window, TermCriteria criteria )
{
CvConnectedComp comp;
Mat probImage = _probImage.getMat();
CvMat c_probImage = probImage;
int iters = cvMeanShift(&c_probImage, window, (CvTermCriteria)criteria, &comp );
window = comp.rect;
return iters;
window.y -= TOLERANCE;
if( window.y < 0 )
window.y = 0;
window.width += 2 * TOLERANCE;
if( window.x + window.width > mat.cols )
window.width = mat.cols - window.x;
window.height += 2 * TOLERANCE;
if( window.y + window.height > mat.rows )
window.height = mat.rows - window.y;
// Calculating moments in new center mass
Moments m = moments( mat(window) );
double m00 = m.m00, m10 = m.m10, m01 = m.m01;
double mu11 = m.mu11, mu20 = m.mu20, mu02 = m.mu02;
if( fabs(m00) < DBL_EPSILON )
return RotatedRect();
double inv_m00 = 1. / m00;
int xc = cvRound( m10 * inv_m00 + window.x );
int yc = cvRound( m01 * inv_m00 + window.y );
double a = mu20 * inv_m00, b = mu11 * inv_m00, c = mu02 * inv_m00;
// Calculating width & height
double square = std::sqrt( 4 * b * b + (a - c) * (a - c) );
// Calculating orientation
double theta = atan2( 2 * b, a - c + square );
// Calculating width & length of figure
double cs = cos( theta );
double sn = sin( theta );
double rotate_a = cs * cs * mu20 + 2 * cs * sn * mu11 + sn * sn * mu02;
double rotate_c = sn * sn * mu20 - 2 * cs * sn * mu11 + cs * cs * mu02;
double length = std::sqrt( rotate_a * inv_m00 ) * 4;
double width = std::sqrt( rotate_c * inv_m00 ) * 4;
// In case, when tetta is 0 or 1.57... the Length & Width may be exchanged
if( length < width )
{
std::swap( length, width );
std::swap( cs, sn );
theta = CV_PI*0.5 - theta;
}
// Saving results
int _xc = cvRound( xc );
int _yc = cvRound( yc );
int t0 = cvRound( fabs( length * cs ));
int t1 = cvRound( fabs( width * sn ));
t0 = MAX( t0, t1 ) + 2;
window.width = MIN( t0, (mat.cols - _xc) * 2 );
t0 = cvRound( fabs( length * sn ));
t1 = cvRound( fabs( width * cs ));
t0 = MAX( t0, t1 ) + 2;
window.height = MIN( t0, (mat.rows - _yc) * 2 );
window.x = MAX( 0, _xc - window.width / 2 );
window.y = MAX( 0, _yc - window.height / 2 );
window.width = MIN( mat.cols - window.x, window.width );
window.height = MIN( mat.rows - window.y, window.height );
RotatedRect box;
box.size.height = (float)length;
box.size.width = (float)width;
box.angle = (float)((CV_PI*0.5+theta)*180./CV_PI);
while(box.angle < 0)
box.angle += 360;
while(box.angle >= 360)
box.angle -= 360;
if(box.angle >= 180)
box.angle -= 180;
box.center = Point2f( window.x + window.width*0.5f, window.y + window.height*0.5f);
return box;
}
/* End of file. */