Fix android build warnings
This commit is contained in:
@@ -81,46 +81,46 @@ Mat BOWMSCTrainer::cluster() const {
|
|||||||
return cluster(mergedDescriptors);
|
return cluster(mergedDescriptors);
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat BOWMSCTrainer::cluster(const Mat& descriptors) const {
|
Mat BOWMSCTrainer::cluster(const Mat& _descriptors) const {
|
||||||
|
|
||||||
CV_Assert(!descriptors.empty());
|
CV_Assert(!_descriptors.empty());
|
||||||
|
|
||||||
// TODO: sort the descriptors before clustering.
|
// TODO: sort the descriptors before clustering.
|
||||||
|
|
||||||
|
|
||||||
Mat icovar = Mat::eye(descriptors.cols,descriptors.cols,descriptors.type());
|
Mat icovar = Mat::eye(_descriptors.cols,_descriptors.cols,_descriptors.type());
|
||||||
|
|
||||||
vector<Mat> initialCentres;
|
vector<Mat> initialCentres;
|
||||||
initialCentres.push_back(descriptors.row(0));
|
initialCentres.push_back(_descriptors.row(0));
|
||||||
for (int i = 1; i < descriptors.rows; i++) {
|
for (int i = 1; i < _descriptors.rows; i++) {
|
||||||
double minDist = DBL_MAX;
|
double minDist = DBL_MAX;
|
||||||
for (size_t j = 0; j < initialCentres.size(); j++) {
|
for (size_t j = 0; j < initialCentres.size(); j++) {
|
||||||
minDist = std::min(minDist,
|
minDist = std::min(minDist,
|
||||||
cv::Mahalanobis(descriptors.row(i),initialCentres[j],
|
cv::Mahalanobis(_descriptors.row(i),initialCentres[j],
|
||||||
icovar));
|
icovar));
|
||||||
}
|
}
|
||||||
if (minDist > clusterSize)
|
if (minDist > clusterSize)
|
||||||
initialCentres.push_back(descriptors.row(i));
|
initialCentres.push_back(_descriptors.row(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
std::vector<std::list<cv::Mat> > clusters;
|
std::vector<std::list<cv::Mat> > clusters;
|
||||||
clusters.resize(initialCentres.size());
|
clusters.resize(initialCentres.size());
|
||||||
for (int i = 0; i < descriptors.rows; i++) {
|
for (int i = 0; i < _descriptors.rows; i++) {
|
||||||
int index = 0; double dist = 0, minDist = DBL_MAX;
|
int index = 0; double dist = 0, minDist = DBL_MAX;
|
||||||
for (size_t j = 0; j < initialCentres.size(); j++) {
|
for (size_t j = 0; j < initialCentres.size(); j++) {
|
||||||
dist = cv::Mahalanobis(descriptors.row(i),initialCentres[j],icovar);
|
dist = cv::Mahalanobis(_descriptors.row(i),initialCentres[j],icovar);
|
||||||
if (dist < minDist) {
|
if (dist < minDist) {
|
||||||
minDist = dist;
|
minDist = dist;
|
||||||
index = (int)j;
|
index = (int)j;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
clusters[index].push_back(descriptors.row(i));
|
clusters[index].push_back(_descriptors.row(i));
|
||||||
}
|
}
|
||||||
|
|
||||||
// TODO: throw away small clusters.
|
// TODO: throw away small clusters.
|
||||||
|
|
||||||
Mat vocabulary;
|
Mat vocabulary;
|
||||||
Mat centre = Mat::zeros(1,descriptors.cols,descriptors.type());
|
Mat centre = Mat::zeros(1,_descriptors.cols,_descriptors.type());
|
||||||
for (size_t i = 0; i < clusters.size(); i++) {
|
for (size_t i = 0; i < clusters.size(); i++) {
|
||||||
centre.setTo(0);
|
centre.setTo(0);
|
||||||
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
|
for (std::list<cv::Mat>::iterator Ci = clusters[i].begin(); Ci != clusters[i].end(); Ci++) {
|
||||||
|
@@ -445,16 +445,16 @@ FabMap1::~FabMap1() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
|
void FabMap1::getLikelihoods(const Mat& queryImgDescriptor,
|
||||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||||
|
|
||||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||||
bool zq, zpq, Lzq;
|
bool zq, zpq, Lzq;
|
||||||
double logP = 0;
|
double logP = 0;
|
||||||
for (int q = 0; q < clTree.cols; q++) {
|
for (int q = 0; q < clTree.cols; q++) {
|
||||||
|
|
||||||
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
zq = queryImgDescriptor.at<float>(0,q) > 0;
|
||||||
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
|
zpq = queryImgDescriptor.at<float>(0,pq(q)) > 0;
|
||||||
Lzq = testImgDescriptors[i].at<float>(0,q) > 0;
|
Lzq = testImageDescriptors[i].at<float>(0,q) > 0;
|
||||||
|
|
||||||
logP += log((this->*PzGL)(q, zq, zpq, Lzq));
|
logP += log((this->*PzGL)(q, zq, zpq, Lzq));
|
||||||
|
|
||||||
@@ -490,16 +490,16 @@ FabMapLUT::~FabMapLUT() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
|
void FabMapLUT::getLikelihoods(const Mat& queryImgDescriptor,
|
||||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||||
|
|
||||||
double precFactor = (double)pow(10.0, -precision);
|
double precFactor = (double)pow(10.0, -precision);
|
||||||
|
|
||||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||||
unsigned long long int logP = 0;
|
unsigned long long int logP = 0;
|
||||||
for (int q = 0; q < clTree.cols; q++) {
|
for (int q = 0; q < clTree.cols; q++) {
|
||||||
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
|
logP += table[q][(queryImgDescriptor.at<float>(0,pq(q)) > 0) +
|
||||||
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
|
((queryImgDescriptor.at<float>(0, q) > 0) << 1) +
|
||||||
((testImgDescriptors[i].at<float>(0,q) > 0) << 2)];
|
((testImageDescriptors[i].at<float>(0,q) > 0) << 2)];
|
||||||
}
|
}
|
||||||
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
|
matches.push_back(IMatch(0,(int)i,-precFactor*(double)logP,0));
|
||||||
}
|
}
|
||||||
@@ -518,7 +518,7 @@ FabMapFBO::~FabMapFBO() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
||||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||||
|
|
||||||
std::multiset<WordStats> wordData;
|
std::multiset<WordStats> wordData;
|
||||||
setWordStatistics(queryImgDescriptor, wordData);
|
setWordStatistics(queryImgDescriptor, wordData);
|
||||||
@@ -526,7 +526,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
|||||||
vector<int> matchIndices;
|
vector<int> matchIndices;
|
||||||
vector<IMatch> queryMatches;
|
vector<IMatch> queryMatches;
|
||||||
|
|
||||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||||
queryMatches.push_back(IMatch(0,(int)i,0,0));
|
queryMatches.push_back(IMatch(0,(int)i,0,0));
|
||||||
matchIndices.push_back((int)i);
|
matchIndices.push_back((int)i);
|
||||||
}
|
}
|
||||||
@@ -543,7 +543,7 @@ void FabMapFBO::getLikelihoods(const Mat& queryImgDescriptor,
|
|||||||
|
|
||||||
for (size_t i = 0; i < matchIndices.size(); i++) {
|
for (size_t i = 0; i < matchIndices.size(); i++) {
|
||||||
bool Lzq =
|
bool Lzq =
|
||||||
testImgDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
|
testImageDescriptors[matchIndices[i]].at<float>(0,wordIter->q) > 0;
|
||||||
queryMatches[matchIndices[i]].likelihood +=
|
queryMatches[matchIndices[i]].likelihood +=
|
||||||
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
|
log((this->*PzGL)(wordIter->q,zq,zpq,Lzq));
|
||||||
currBest =
|
currBest =
|
||||||
@@ -689,17 +689,17 @@ void FabMap2::add(const vector<Mat>& queryImgDescriptors) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
|
void FabMap2::getLikelihoods(const Mat& queryImgDescriptor,
|
||||||
const vector<Mat>& testImgDescriptors, vector<IMatch>& matches) {
|
const vector<Mat>& testImageDescriptors, vector<IMatch>& matches) {
|
||||||
|
|
||||||
if (&testImgDescriptors== &(this->testImgDescriptors)) {
|
if (&testImageDescriptors == &testImgDescriptors) {
|
||||||
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
|
getIndexLikelihoods(queryImgDescriptor, testDefaults, testInvertedMap,
|
||||||
matches);
|
matches);
|
||||||
} else {
|
} else {
|
||||||
CV_Assert(!(flags & MOTION_MODEL));
|
CV_Assert(!(flags & MOTION_MODEL));
|
||||||
vector<double> defaults;
|
vector<double> defaults;
|
||||||
std::map<int, vector<int> > invertedMap;
|
std::map<int, vector<int> > invertedMap;
|
||||||
for (size_t i = 0; i < testImgDescriptors.size(); i++) {
|
for (size_t i = 0; i < testImageDescriptors.size(); i++) {
|
||||||
addToIndex(testImgDescriptors[i],defaults,invertedMap);
|
addToIndex(testImageDescriptors[i],defaults,invertedMap);
|
||||||
}
|
}
|
||||||
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
|
getIndexLikelihoods(queryImgDescriptor, defaults, invertedMap, matches);
|
||||||
}
|
}
|
||||||
|
@@ -1020,7 +1020,7 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
|||||||
}
|
}
|
||||||
else
|
else
|
||||||
#endif
|
#endif
|
||||||
#ifdef CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX //old SSE optimization
|
#if defined CV_HAAR_USE_SSE && CV_HAAR_USE_SSE && !CV_HAAR_USE_AVX //old SSE optimization
|
||||||
if(haveSSE2)
|
if(haveSSE2)
|
||||||
{
|
{
|
||||||
for( i = start_stage; i < cascade->count; i++ )
|
for( i = start_stage; i < cascade->count; i++ )
|
||||||
@@ -1111,23 +1111,23 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
|
|||||||
for( i = start_stage; i < cascade->count; i++ )
|
for( i = start_stage; i < cascade->count; i++ )
|
||||||
{
|
{
|
||||||
stage_sum = 0.0;
|
stage_sum = 0.0;
|
||||||
int j = 0;
|
int k = 0;
|
||||||
#ifdef CV_HAAR_USE_AVX
|
#ifdef CV_HAAR_USE_AVX
|
||||||
if(haveAVX)
|
if(haveAVX)
|
||||||
{
|
{
|
||||||
for( ; j < cascade->stage_classifier[i].count-8; j+=8 )
|
for( ; k < cascade->stage_classifier[i].count-8; k+=8 )
|
||||||
{
|
{
|
||||||
stage_sum += icvEvalHidHaarClassifierAVX(
|
stage_sum += icvEvalHidHaarClassifierAVX(
|
||||||
cascade->stage_classifier[i].classifier+j,
|
cascade->stage_classifier[i].classifier+k,
|
||||||
variance_norm_factor, p_offset );
|
variance_norm_factor, p_offset );
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
for(; j < cascade->stage_classifier[i].count; j++ )
|
for(; k < cascade->stage_classifier[i].count; k++ )
|
||||||
{
|
{
|
||||||
|
|
||||||
stage_sum += icvEvalHidHaarClassifier(
|
stage_sum += icvEvalHidHaarClassifier(
|
||||||
cascade->stage_classifier[i].classifier + j,
|
cascade->stage_classifier[i].classifier + k,
|
||||||
variance_norm_factor, p_offset );
|
variance_norm_factor, p_offset );
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@@ -50,7 +50,7 @@ using namespace std;
|
|||||||
|
|
||||||
///////////////////////
|
///////////////////////
|
||||||
// Functions
|
// Functions
|
||||||
void read_imgList(const string& filename, vector<Mat>& images) {
|
static void read_imgList(const string& filename, vector<Mat>& images) {
|
||||||
std::ifstream file(filename.c_str(), ifstream::in);
|
std::ifstream file(filename.c_str(), ifstream::in);
|
||||||
if (!file) {
|
if (!file) {
|
||||||
string error_message = "No valid input file was given, please check the given filename.";
|
string error_message = "No valid input file was given, please check the given filename.";
|
||||||
@@ -62,7 +62,7 @@ void read_imgList(const string& filename, vector<Mat>& images) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat formatImagesForPCA(const vector<Mat> &data)
|
static Mat formatImagesForPCA(const vector<Mat> &data)
|
||||||
{
|
{
|
||||||
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F);
|
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F);
|
||||||
for(unsigned int i = 0; i < data.size(); i++)
|
for(unsigned int i = 0; i < data.size(); i++)
|
||||||
@@ -74,7 +74,7 @@ Mat formatImagesForPCA(const vector<Mat> &data)
|
|||||||
return dst;
|
return dst;
|
||||||
}
|
}
|
||||||
|
|
||||||
Mat toGrayscale(InputArray _src) {
|
static Mat toGrayscale(InputArray _src) {
|
||||||
Mat src = _src.getMat();
|
Mat src = _src.getMat();
|
||||||
// only allow one channel
|
// only allow one channel
|
||||||
if(src.channels() != 1) {
|
if(src.channels() != 1) {
|
||||||
@@ -95,7 +95,7 @@ struct params
|
|||||||
string winName;
|
string winName;
|
||||||
};
|
};
|
||||||
|
|
||||||
void onTrackbar(int pos, void* ptr)
|
static void onTrackbar(int pos, void* ptr)
|
||||||
{
|
{
|
||||||
cout << "Retained Variance = " << pos << "% ";
|
cout << "Retained Variance = " << pos << "% ";
|
||||||
cout << "re-calculating PCA..." << std::flush;
|
cout << "re-calculating PCA..." << std::flush;
|
||||||
|
Reference in New Issue
Block a user