Added Features2D descriptor tutorial + drawMatches in rst
This commit is contained in:
@@ -0,0 +1,103 @@
|
||||
.. _feature_description:
|
||||
|
||||
Feature Description
|
||||
*******************
|
||||
|
||||
Goal
|
||||
=====
|
||||
|
||||
In this tutorial you will learn how to:
|
||||
|
||||
.. container:: enumeratevisibleitemswithsquare
|
||||
|
||||
* Use the :descriptor_extractor:`DescriptorExtractor<>` interface in order to find the feature vector correspondent to the keypoints. Specifically:
|
||||
|
||||
* Use :surf_descriptor_extractor:`SurfDescriptorExtractor<>` and its function :descriptor_extractor:`compute<>` to perform the required calculations.
|
||||
* Use the function :draw_matches:`drawMatches<>` to draw the detected matches.
|
||||
|
||||
|
||||
Theory
|
||||
======
|
||||
|
||||
Code
|
||||
====
|
||||
|
||||
This tutorial code's is shown lines below. You can also download it from `here <https://code.ros.org/svn/opencv/trunk/opencv/samples/cpp/tutorial_code/features2D/SURF_descriptor.cpp>`_
|
||||
|
||||
.. code-block:: cpp
|
||||
|
||||
#include <stdio.h>
|
||||
#include <iostream>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
void readme();
|
||||
|
||||
/** @function main */
|
||||
int main( int argc, char** argv )
|
||||
{
|
||||
if( argc != 3 )
|
||||
{ return -1; }
|
||||
|
||||
Mat img_1 = imread( argv[1], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
Mat img_2 = imread( argv[2], CV_LOAD_IMAGE_GRAYSCALE );
|
||||
|
||||
if( !img_1.data || !img_2.data )
|
||||
{ return -1; }
|
||||
|
||||
//-- Step 1: Detect the keypoints using SURF Detector
|
||||
int minHessian = 400;
|
||||
|
||||
SurfFeatureDetector detector( minHessian );
|
||||
|
||||
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
||||
|
||||
detector.detect( img_1, keypoints_1 );
|
||||
detector.detect( img_2, keypoints_2 );
|
||||
|
||||
//-- Step 2: Calculate descriptors (feature vectors)
|
||||
SurfDescriptorExtractor extractor;
|
||||
|
||||
Mat descriptors_1, descriptors_2;
|
||||
|
||||
extractor.compute( img_1, keypoints_1, descriptors_1 );
|
||||
extractor.compute( img_2, keypoints_2, descriptors_2 );
|
||||
|
||||
//-- Step 3: Matching descriptor vectors with a brute force matcher
|
||||
BruteForceMatcher< L2<float> > matcher;
|
||||
std::vector< DMatch > matches;
|
||||
matcher.match( descriptors_1, descriptors_2, matches );
|
||||
|
||||
//-- Draw matches
|
||||
Mat img_matches;
|
||||
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
|
||||
|
||||
//-- Show detected matches
|
||||
imshow("Matches", img_matches );
|
||||
|
||||
waitKey(0);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** @function readme */
|
||||
void readme()
|
||||
{ std::cout << " Usage: ./SURF_descriptor <img1> <img2>" << std::endl; }
|
||||
|
||||
Explanation
|
||||
============
|
||||
|
||||
Result
|
||||
======
|
||||
|
||||
#. Here is the result after applying the BruteForce matcher between the two original images:
|
||||
|
||||
.. image:: images/Feature_Description_BruteForce_Result.jpg
|
||||
:align: center
|
||||
:height: 200pt
|
||||
|
||||
|
||||
|
Binary file not shown.
After Width: | Height: | Size: 117 KiB |
Reference in New Issue
Block a user