converted flood fill, getrectsubpix & cornersubpix to C++

This commit is contained in:
Vadim Pisarevsky 2013-02-11 23:49:10 +04:00
parent c527340cb6
commit 06f4a56469
8 changed files with 451 additions and 1186 deletions

@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -23,7 +24,7 @@
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
@ -40,119 +41,43 @@
//M*/
#include "precomp.hpp"
CV_IMPL void
cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
int count, CvSize win, CvSize zeroZone,
CvTermCriteria criteria )
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
Size win, Size zeroZone, TermCriteria criteria )
{
cv::AutoBuffer<float> buffer;
const int MAX_ITERS = 100;
const float drv[] = { -1.f, 0.f, 1.f };
float *maskX;
float *maskY;
float *mask;
float *src_buffer;
float *gx_buffer;
float *gy_buffer;
int win_w = win.width * 2 + 1, win_h = win.height * 2 + 1;
int win_rect_size = (win_w + 4) * (win_h + 4);
double coeff;
CvSize size, src_buf_size;
int i, j, k, pt_i;
int max_iters = 10;
double eps = 0;
int i, j, k;
int max_iters = (criteria.type & CV_TERMCRIT_ITER) ? MIN(MAX(criteria.maxCount, 1), MAX_ITERS) : MAX_ITERS;
double eps = (criteria.type & CV_TERMCRIT_EPS) ? MAX(criteria.epsilon, 0.) : 0;
eps *= eps; // use square of error in comparsion operations
CvMat stub, *src = (CvMat*)srcarr;
src = cvGetMat( srcarr, &stub );
if( CV_MAT_TYPE( src->type ) != CV_8UC1 )
CV_Error( CV_StsUnsupportedFormat, "The source image must be 8-bit single-channel (CV_8UC1)" );
if( !corners )
CV_Error( CV_StsNullPtr, "" );
if( count < 0 )
CV_Error( CV_StsBadSize, "" );
cv::Mat src = _image.getMat(), cornersmat = _corners.getMat();
int count = cornersmat.checkVector(2, CV_32F);
CV_Assert( count >= 0 );
Point2f* corners = (Point2f*)cornersmat.data;
if( count == 0 )
return;
if( win.width <= 0 || win.height <= 0 )
CV_Error( CV_StsBadSize, "" );
CV_Assert( win.width > 0 && win.height > 0 );
CV_Assert( src.cols >= win_w + 4 && src.rows >= win_h + 4 );
CV_Assert( src.channels() == 1 );
size = cvGetMatSize( src );
if( size.width < win_w + 4 || size.height < win_h + 4 )
CV_Error( CV_StsBadSize, "" );
/* initialize variables, controlling loop termination */
switch( criteria.type )
{
case CV_TERMCRIT_ITER:
eps = 0.f;
max_iters = criteria.max_iter;
break;
case CV_TERMCRIT_EPS:
eps = criteria.epsilon;
max_iters = MAX_ITERS;
break;
case CV_TERMCRIT_ITER | CV_TERMCRIT_EPS:
eps = criteria.epsilon;
max_iters = criteria.max_iter;
break;
default:
assert( 0 );
CV_Error( CV_StsBadFlag, "" );
}
eps = MAX( eps, 0 );
eps *= eps; /* use square of error in comparsion operations. */
max_iters = MAX( max_iters, 1 );
max_iters = MIN( max_iters, MAX_ITERS );
buffer.allocate( win_rect_size * 5 + win_w + win_h + 32 );
/* assign pointers */
maskX = buffer;
maskY = maskX + win_w + 4;
mask = maskY + win_h + 4;
src_buffer = mask + win_w * win_h;
gx_buffer = src_buffer + win_rect_size;
gy_buffer = gx_buffer + win_rect_size;
coeff = 1. / (win.width * win.width);
/* calculate mask */
for( i = -win.width, k = 0; i <= win.width; i++, k++ )
{
maskX[k] = (float)exp( -i * i * coeff );
}
if( win.width == win.height )
{
maskY = maskX;
}
else
{
coeff = 1. / (win.height * win.height);
for( i = -win.height, k = 0; i <= win.height; i++, k++ )
{
maskY[k] = (float) exp( -i * i * coeff );
}
}
Mat maskm(win_h, win_w, CV_32F), subpix_buf(win_h+2, win_w+2, CV_32F);
float* mask = maskm.ptr<float>();
for( i = 0; i < win_h; i++ )
{
float y = (float)(i - win.height)/win.height;
float vy = std::exp(-y*y);
for( j = 0; j < win_w; j++ )
{
mask[i * win_w + j] = maskX[j] * maskY[i];
float x = (float)(j - win.width)/win.width;
mask[i * win_w + j] = (float)(vy*std::exp(-x*x));
}
}
/* make zero_zone */
// make zero_zone
if( zeroZone.width >= 0 && zeroZone.height >= 0 &&
zeroZone.width * 2 + 1 < win_w && zeroZone.height * 2 + 1 < win_h )
{
@ -165,46 +90,31 @@ cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
}
}
/* set sizes of image rectangles, used in convolutions */
src_buf_size.width = win_w + 2;
src_buf_size.height = win_h + 2;
/* do optimization loop for all the points */
for( pt_i = 0; pt_i < count; pt_i++ )
// do optimization loop for all the points
for( int pt_i = 0; pt_i < count; pt_i++ )
{
CvPoint2D32f cT = corners[pt_i], cI = cT;
Point2f cT = corners[pt_i], cI = cT;
int iter = 0;
double err;
double err = 0;
do
{
CvPoint2D32f cI2;
double a, b, c, bb1, bb2;
Point2f cI2;
double a = 0, b = 0, c = 0, bb1 = 0, bb2 = 0;
IPPI_CALL( icvGetRectSubPix_8u32f_C1R( (uchar*)src->data.ptr, src->step, size,
src_buffer, (win_w + 2) * sizeof( src_buffer[0] ),
cvSize( win_w + 2, win_h + 2 ), cI ));
getRectSubPix(src, Size(win_w+2, win_h+2), cI, subpix_buf, subpix_buf.type());
const float* subpix = &subpix_buf.at<float>(1,1);
/* calc derivatives */
icvSepConvSmall3_32f( src_buffer+src_buf_size.width, src_buf_size.width * sizeof(src_buffer[0]),
gx_buffer, win_w * sizeof(gx_buffer[0]),
src_buf_size, drv, NULL, NULL );
icvSepConvSmall3_32f( src_buffer+1, src_buf_size.width * sizeof(src_buffer[0]),
gy_buffer, win_w * sizeof(gy_buffer[0]),
src_buf_size, NULL, drv, NULL );
a = b = c = bb1 = bb2 = 0;
/* process gradient */
for( i = 0, k = 0; i < win_h; i++ )
// process gradient
for( i = 0, k = 0; i < win_h; i++, subpix += win_w + 2 )
{
double py = i - win.height;
for( j = 0; j < win_w; j++, k++ )
{
double m = mask[k];
double tgx = gx_buffer[k];
double tgy = gy_buffer[k];
double tgx = subpix[1] - subpix[-1];
double tgy = subpix[win_w+2] - subpix[-win_w-2];
double gxx = tgx * tgx * m;
double gxy = tgx * tgy * m;
double gyy = tgy * tgy * m;
@ -220,46 +130,38 @@ cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* corners,
}
double det=a*c-b*b;
if( fabs( det ) > DBL_EPSILON*DBL_EPSILON )
{
// 2x2 matrix inversion
double scale=1.0/det;
cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
}
else
{
cI2 = cI;
}
if( fabs( det ) <= DBL_EPSILON*DBL_EPSILON )
break;
// 2x2 matrix inversion
double scale=1.0/det;
cI2.x = (float)(cI.x + c*scale*bb1 - b*scale*bb2);
cI2.y = (float)(cI.y - b*scale*bb1 + a*scale*bb2);
err = (cI2.x - cI.x) * (cI2.x - cI.x) + (cI2.y - cI.y) * (cI2.y - cI.y);
cI = cI2;
}
while( ++iter < max_iters && err > eps );
/* if new point is too far from initial, it means poor convergence.
leave initial point as the result */
// if new point is too far from initial, it means poor convergence.
// leave initial point as the result
if( fabs( cI.x - cT.x ) > win.width || fabs( cI.y - cT.y ) > win.height )
{
cI = cT;
}
corners[pt_i] = cI; /* store result */
corners[pt_i] = cI;
}
}
void cv::cornerSubPix( InputArray _image, InputOutputArray _corners,
Size winSize, Size zeroZone,
TermCriteria criteria )
{
Mat corners = _corners.getMat();
int ncorners = corners.checkVector(2);
CV_Assert( ncorners >= 0 && corners.depth() == CV_32F );
Mat image = _image.getMat();
CvMat c_image = image;
cvFindCornerSubPix( &c_image, (CvPoint2D32f*)corners.data, ncorners,
winSize, zeroZone, criteria );
CV_IMPL void
cvFindCornerSubPix( const void* srcarr, CvPoint2D32f* _corners,
int count, CvSize win, CvSize zeroZone,
CvTermCriteria criteria )
{
if(!_corners || count <= 0)
return;
cv::Mat src = cv::cvarrToMat(srcarr), corners(count, 1, CV_32FC2, _corners);
cv::cornerSubPix(src, corners, win, zeroZone, criteria);
}
/* End of file. */

@ -43,83 +43,6 @@
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static IppStatus sts = ippInit();
#endif
/****************************************************************************************/
/* lightweight convolution with 3x3 kernel */
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
CvSize src_size, const float* kx, const float* ky, float* buffer )
{
int dst_width, buffer_step = 0;
int x, y;
bool fast_kx = true, fast_ky = true;
assert( src && dst && src_size.width > 2 && src_size.height > 2 &&
(src_step & 3) == 0 && (dst_step & 3) == 0 &&
(kx || ky) && (buffer || !kx || !ky));
src_step /= sizeof(src[0]);
dst_step /= sizeof(dst[0]);
dst_width = src_size.width - 2;
if( !kx )
{
/* set vars, so that vertical convolution
will write results into destination ROI and
horizontal convolution won't run */
src_size.width = dst_width;
buffer_step = dst_step;
buffer = dst;
dst_width = 0;
}
else
fast_kx = kx[1] == 0.f && kx[0] == -kx[2] && kx[0] == -1.f;
assert( src_step >= src_size.width && dst_step >= dst_width );
src_size.height -= 2;
if( !ky )
{
/* set vars, so that vertical convolution won't run and
horizontal convolution will write results into destination ROI */
src_size.height += 2;
buffer_step = src_step;
buffer = src;
src_size.width = 0;
}
else
fast_ky = ky[1] == 0.f && ky[0] == -ky[2] && ky[0] == -1.f;
for( y = 0; y < src_size.height; y++, src += src_step,
dst += dst_step,
buffer += buffer_step )
{
float* src2 = src + src_step;
float* src3 = src + src_step*2;
if( fast_ky )
for( x = 0; x < src_size.width; x++ )
{
buffer[x] = (float)(src3[x] - src[x]);
}
else
for( x = 0; x < src_size.width; x++ )
{
buffer[x] = (float)(ky[0]*src[x] + ky[1]*src2[x] + ky[2]*src3[x]);
}
if( fast_kx )
for( x = 0; x < dst_width; x++ )
{
dst[x] = (float)(buffer[x+2] - buffer[x]);
}
else
for( x = 0; x < dst_width; x++ )
{
dst[x] = (float)(kx[0]*buffer[x] + kx[1]*buffer[x+1] + kx[2]*buffer[x+2]);
}
}
}
/****************************************************************************************\
Sobel & Scharr Derivative Filters

@ -7,10 +7,11 @@
// copy or use the software.
//
//
// Intel License Agreement
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
@ -23,7 +24,7 @@
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
@ -41,7 +42,10 @@
#include "precomp.hpp"
typedef struct CvFFillSegment
namespace cv
{
struct FFillSegment
{
ushort y;
ushort l;
@ -49,11 +53,13 @@ typedef struct CvFFillSegment
ushort prevl;
ushort prevr;
short dir;
}
CvFFillSegment;
};
#define UP 1
#define DOWN -1
enum
{
UP = 1,
DOWN = -1
};
#define ICV_PUSH( Y, L, R, PREV_L, PREV_R, DIR ) \
{ \
@ -65,7 +71,7 @@ CvFFillSegment;
tail->dir = (short)(DIR); \
if( ++tail == buffer_end ) \
{ \
buffer->resize(buffer->size() * 2); \
buffer->resize(buffer->size() * 3/2); \
tail = &buffer->front() + (tail - head); \
head = &buffer->front(); \
buffer_end = head + buffer->size(); \
@ -83,23 +89,52 @@ CvFFillSegment;
DIR = tail->dir; \
}
/****************************************************************************************\
* Simple Floodfill (repainting single-color connected component) *
\****************************************************************************************/
struct ConnectedComp
{
ConnectedComp();
Rect rect;
Point pt;
int threshold;
int label;
int area;
int harea;
int carea;
int perimeter;
int nholes;
int ninflections;
double mx;
double my;
Scalar avg;
Scalar sdv;
};
ConnectedComp::ConnectedComp()
{
rect = Rect(0, 0, 0, 0);
pt = Point(-1, -1);
threshold = -1;
label = -1;
area = harea = carea = perimeter = nholes = ninflections = 0;
mx = my = 0;
avg = sdv = Scalar::all(0);
}
// Simple Floodfill (repainting single-color connected component)
template<typename _Tp>
static void
icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
_Tp newVal, CvConnectedComp* region, int flags,
std::vector<CvFFillSegment>* buffer )
floodFill_CnIR( Mat& image, Point seed,
_Tp newVal, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
typedef typename cv::DataType<_Tp>::channel_type _CTp;
_Tp* img = (_Tp*)(pImage + step * seed.y);
typedef typename DataType<_Tp>::channel_type _CTp;
_Tp* img = (_Tp*)(image.data + image.step * seed.y);
Size roi = image.size();
int i, L, R;
int area = 0;
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = XMin = XMax = seed.x;
@ -142,7 +177,7 @@ icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
for( k = 0; k < 3; k++ )
{
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
img = (_Tp*)(image.data + (YC + dir) * image.step);
int left = data[k][1];
int right = data[k][2];
@ -169,12 +204,12 @@ icvFloodFill_CnIR( uchar* pImage, int step, CvSize roi, CvPoint seed,
if( region )
{
region->pt = seed;
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
region->value = cv::Scalar(newVal);
}
}
@ -192,12 +227,12 @@ struct Diff8uC1
struct Diff8uC3
{
Diff8uC3(cv::Vec3b _lo, cv::Vec3b _up)
Diff8uC3(Vec3b _lo, Vec3b _up)
{
for( int k = 0; k < 3; k++ )
lo[k] = _lo[k], interval[k] = _lo[k] + _up[k];
}
bool operator()(const cv::Vec3b* a, const cv::Vec3b* b) const
bool operator()(const Vec3b* a, const Vec3b* b) const
{
return (unsigned)(a[0][0] - b[0][0] + lo[0]) <= interval[0] &&
(unsigned)(a[0][1] - b[0][1] + lo[1]) <= interval[1] &&
@ -233,37 +268,30 @@ struct DiffC3
};
typedef DiffC1<int> Diff32sC1;
typedef DiffC3<cv::Vec3i> Diff32sC3;
typedef DiffC3<Vec3i> Diff32sC3;
typedef DiffC1<float> Diff32fC1;
typedef DiffC3<cv::Vec3f> Diff32fC3;
typedef DiffC3<Vec3f> Diff32fC3;
static cv::Vec3i& operator += (cv::Vec3i& a, const cv::Vec3b& b)
{
a[0] += b[0];
a[1] += b[1];
a[2] += b[2];
return a;
}
template<typename _Tp, typename _WTp, class Diff>
template<typename _Tp, typename _MTp, typename _WTp, class Diff>
static void
icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
CvSize /*roi*/, CvPoint seed, _Tp newVal, Diff diff,
CvConnectedComp* region, int flags,
std::vector<CvFFillSegment>* buffer )
floodFillGrad_CnIR( Mat& image, Mat& msk,
Point seed, _Tp newVal, _MTp newMaskVal,
Diff diff, ConnectedComp* region, int flags,
std::vector<FFillSegment>* buffer )
{
typedef typename cv::DataType<_Tp>::channel_type _CTp;
typedef typename DataType<_Tp>::channel_type _CTp;
int step = (int)image.step, maskStep = (int)msk.step;
uchar* pImage = image.data;
_Tp* img = (_Tp*)(pImage + step*seed.y);
uchar* mask = (pMask += maskStep + 1) + maskStep*seed.y;
uchar* pMask = msk.data + maskStep + sizeof(_MTp);
_MTp* mask = (_MTp*)(pMask + maskStep*seed.y);
int i, L, R;
int area = 0;
_WTp sum = _WTp((typename cv::DataType<_Tp>::channel_type)0);
int XMin, XMax, YMin = seed.y, YMax = seed.y;
int _8_connectivity = (flags & 255) == 8;
int fixedRange = flags & CV_FLOODFILL_FIXED_RANGE;
int fillImage = (flags & CV_FLOODFILL_MASK_ONLY) == 0;
uchar newMaskVal = (uchar)(flags & 0xff00 ? flags >> 8 : 1);
CvFFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
int fixedRange = flags & FLOODFILL_FIXED_RANGE;
int fillImage = (flags & FLOODFILL_MASK_ONLY) == 0;
FFillSegment* buffer_end = &buffer->front() + buffer->size(), *head = &buffer->front(), *tail = &buffer->front();
L = R = seed.x;
if( mask[L] )
@ -323,7 +351,7 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
dir = data[k][0];
img = (_Tp*)(pImage + (YC + dir) * step);
_Tp* img1 = (_Tp*)(pImage + YC * step);
mask = pMask + (YC + dir) * maskStep;
mask = (_MTp*)(pMask + (YC + dir) * maskStep);
int left = data[k][1];
int right = data[k][2];
@ -354,7 +382,7 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
mask[j] = newMaskVal;
while( !mask[++i] &&
(diff( img + i, img + (i-1) ) ||
(diff( img + i, img + (i-1) ) ||
(diff( img + i, img1 + i) && i <= R)))
mask[i] = newMaskVal;
@ -368,13 +396,13 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
_Tp val;
if( !mask[i] &&
(((val = img[i],
(unsigned)(idx = i-L-1) <= length) &&
diff( &val, img1 + (i-1))) ||
(((val = img[i],
(unsigned)(idx = i-L-1) <= length) &&
diff( &val, img1 + (i-1))) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + i )) ||
diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + (i+1) ))))
diff( &val, img1 + (i+1) ))))
{
int j = i;
mask[i] = newMaskVal;
@ -382,14 +410,14 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
mask[j] = newMaskVal;
while( !mask[++i] &&
((val = img[i],
diff( &val, img + (i-1) )) ||
((val = img[i],
diff( &val, img + (i-1) )) ||
(((unsigned)(idx = i-L-1) <= length &&
diff( &val, img1 + (i-1) ))) ||
diff( &val, img1 + (i-1) ))) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + i )) ||
diff( &val, img1 + i )) ||
((unsigned)(++idx) <= length &&
diff( &val, img1 + (i+1) ))))
diff( &val, img1 + (i+1) ))))
mask[i] = newMaskVal;
ICV_PUSH( YC + dir, j+1, i-1, L, R, -dir );
@ -401,56 +429,40 @@ icvFloodFillGrad_CnIR( uchar* pImage, int step, uchar* pMask, int maskStep,
if( fillImage )
for( i = L; i <= R; i++ )
img[i] = newVal;
else if( region )
for( i = L; i <= R; i++ )
sum += img[i];
/*else if( region )
for( i = L; i <= R; i++ )
sum += img[i];*/
}
if( region )
{
region->pt = seed;
region->label = saturate_cast<int>(newMaskVal);
region->area = area;
region->rect.x = XMin;
region->rect.y = YMin;
region->rect.width = XMax - XMin + 1;
region->rect.height = YMax - YMin + 1;
if( fillImage )
region->value = cv::Scalar(newVal);
else
{
double iarea = area ? 1./area : 0;
region->value = cv::Scalar(sum*iarea);
}
}
}
}
/****************************************************************************************\
* External Functions *
\****************************************************************************************/
typedef void (*CvFloodFillFunc)(
void* img, int step, CvSize size, CvPoint seed, void* newval,
CvConnectedComp* comp, int flags, void* buffer, int cn );
typedef void (*CvFloodFillGradFunc)(
void* img, int step, uchar* mask, int maskStep, CvSize size,
CvPoint seed, void* newval, void* d_lw, void* d_up, void* ccomp,
int flags, void* buffer, int cn );
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Point seedPoint, Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
cv::Ptr<CvMat> tempMask;
std::vector<CvFFillSegment> buffer;
ConnectedComp comp;
vector<FFillSegment> buffer;
if( comp )
memset( comp, 0, sizeof(*comp) );
if( rect )
*rect = Rect();
int i, type, depth, cn, is_simple;
int buffer_size, connectivity = flags & 255;
int i, connectivity = flags & 255;
union {
uchar b[4];
int i[4];
@ -459,191 +471,176 @@ cvFloodFill( CvArr* arr, CvPoint seed_point,
} nv_buf;
nv_buf._[0] = nv_buf._[1] = nv_buf._[2] = nv_buf._[3] = 0;
struct { cv::Vec3b b; cv::Vec3i i; cv::Vec3f f; } ld_buf, ud_buf;
CvMat stub, *img = cvGetMat(arr, &stub);
CvMat maskstub, *mask = (CvMat*)maskarr;
CvSize size;
struct { Vec3b b; Vec3i i; Vec3f f; } ld_buf, ud_buf;
Mat img = _image.getMat(), mask;
if( !_mask.empty() )
mask = _mask.getMat();
Size size = img.size();
type = CV_MAT_TYPE( img->type );
depth = CV_MAT_DEPTH(type);
cn = CV_MAT_CN(type);
int type = img.type();
int depth = img.depth();
int cn = img.channels();
if( connectivity == 0 )
connectivity = 4;
else if( connectivity != 4 && connectivity != 8 )
CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
is_simple = mask == 0 && (flags & CV_FLOODFILL_MASK_ONLY) == 0;
bool is_simple = mask.empty() && (flags & FLOODFILL_MASK_ONLY) == 0;
for( i = 0; i < cn; i++ )
{
if( lo_diff.val[i] < 0 || up_diff.val[i] < 0 )
if( loDiff[i] < 0 || upDiff[i] < 0 )
CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
is_simple &= fabs(lo_diff.val[i]) < DBL_EPSILON && fabs(up_diff.val[i]) < DBL_EPSILON;
is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON;
}
size = cvGetMatSize( img );
if( (unsigned)seed_point.x >= (unsigned)size.width ||
(unsigned)seed_point.y >= (unsigned)size.height )
if( (unsigned)seedPoint.x >= (unsigned)size.width ||
(unsigned)seedPoint.y >= (unsigned)size.height )
CV_Error( CV_StsOutOfRange, "Seed point is outside of image" );
cvScalarToRawData( &newVal, &nv_buf, type, 0 );
buffer_size = MAX( size.width, size.height ) * 2;
scalarToRawData( newVal, &nv_buf, type, 0);
size_t buffer_size = MAX( size.width, size.height ) * 2;
buffer.resize( buffer_size );
if( is_simple )
{
int elem_size = CV_ELEM_SIZE(type);
const uchar* seed_ptr = img->data.ptr + img->step*seed_point.y + elem_size*seed_point.x;
int elem_size = img.elemSize();
const uchar* seed_ptr = img.data + img.step*seedPoint.y + elem_size*seedPoint.x;
for(i = 0; i < elem_size; i++)
if (seed_ptr[i] != nv_buf.b[i])
break;
if (i != elem_size)
if( i != elem_size )
{
if( type == CV_8UC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.b[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.b[0], &comp, flags, &buffer);
else if( type == CV_8UC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3b(nv_buf.b),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3b(nv_buf.b), &comp, flags, &buffer);
else if( type == CV_32SC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.i[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.i[0], &comp, flags, &buffer);
else if( type == CV_32FC1 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, nv_buf.f[0],
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, nv_buf.f[0], &comp, flags, &buffer);
else if( type == CV_32SC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3i(nv_buf.i),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3i(nv_buf.i), &comp, flags, &buffer);
else if( type == CV_32FC3 )
icvFloodFill_CnIR(img->data.ptr, img->step, size, seed_point, cv::Vec3f(nv_buf.f),
comp, flags, &buffer);
floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer);
else
CV_Error( CV_StsUnsupportedFormat, "" );
return;
if( rect )
*rect = comp.rect;
return comp.area;
}
}
if( !mask )
if( mask.empty() )
{
/* created mask will be 8-byte aligned */
tempMask = cvCreateMat( size.height + 2, (size.width + 9) & -8, CV_8UC1 );
Mat tempMask( size.height + 2, size.width + 2, CV_8UC1 );
tempMask.setTo(Scalar::all(0));
mask = tempMask;
}
else
{
mask = cvGetMat( mask, &maskstub );
if( !CV_IS_MASK_ARR( mask ))
CV_Error( CV_StsBadMask, "" );
if( mask->width != size.width + 2 || mask->height != size.height + 2 )
CV_Error( CV_StsUnmatchedSizes, "mask must be 2 pixel wider "
"and 2 pixel taller than filled image" );
CV_Assert( mask.rows == size.height+2 && mask.cols == size.width+2 );
CV_Assert( mask.type() == CV_8U );
}
int width = tempMask ? mask->step : size.width + 2;
uchar* mask_row = mask->data.ptr + mask->step;
memset( mask_row - mask->step, 1, width );
memset( mask.data, 1, mask.cols );
memset( mask.data + mask.step*(mask.rows-1), 1, mask.cols );
for( i = 1; i <= size.height; i++, mask_row += mask->step )
for( i = 1; i <= size.height; i++ )
{
if( tempMask )
memset( mask_row, 0, width );
mask_row[0] = mask_row[size.width+1] = (uchar)1;
mask.at<uchar>(i, 0) = mask.at<uchar>(i, mask.cols-1) = (uchar)1;
}
memset( mask_row, 1, width );
if( depth == CV_8U )
for( i = 0; i < cn; i++ )
{
int t = cvFloor(lo_diff.val[i]);
ld_buf.b[i] = CV_CAST_8U(t);
t = cvFloor(up_diff.val[i]);
ud_buf.b[i] = CV_CAST_8U(t);
ld_buf.b[i] = saturate_cast<uchar>(cvFloor(loDiff[i]));
ud_buf.b[i] = saturate_cast<uchar>(cvFloor(upDiff[i]));
}
else if( depth == CV_32S )
for( i = 0; i < cn; i++ )
{
int t = cvFloor(lo_diff.val[i]);
ld_buf.i[i] = t;
t = cvFloor(up_diff.val[i]);
ud_buf.i[i] = t;
ld_buf.i[i] = cvFloor(loDiff[i]);
ud_buf.i[i] = cvFloor(upDiff[i]);
}
else if( depth == CV_32F )
for( i = 0; i < cn; i++ )
{
ld_buf.f[i] = (float)lo_diff.val[i];
ud_buf.f[i] = (float)up_diff.val[i];
ld_buf.f[i] = (float)loDiff[i];
ud_buf.f[i] = (float)upDiff[i];
}
else
CV_Error( CV_StsUnsupportedFormat, "" );
uchar newMaskVal = (uchar)((flags & ~0xff) == 0 ? 1 : ((flags >> 8) & 255));
if( type == CV_8UC1 )
icvFloodFillGrad_CnIR<uchar, int, Diff8uC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.b[0],
Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
comp, flags, &buffer);
floodFillGrad_CnIR<uchar, uchar, int, Diff8uC1>(
img, mask, seedPoint, nv_buf.b[0], newMaskVal,
Diff8uC1(ld_buf.b[0], ud_buf.b[0]),
&comp, flags, &buffer);
else if( type == CV_8UC3 )
icvFloodFillGrad_CnIR<cv::Vec3b, cv::Vec3i, Diff8uC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3b(nv_buf.b),
Diff8uC3(ld_buf.b, ud_buf.b),
comp, flags, &buffer);
floodFillGrad_CnIR<Vec3b, uchar, Vec3i, Diff8uC3>(
img, mask, seedPoint, Vec3b(nv_buf.b), newMaskVal,
Diff8uC3(ld_buf.b, ud_buf.b),
&comp, flags, &buffer);
else if( type == CV_32SC1 )
icvFloodFillGrad_CnIR<int, int, Diff32sC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.i[0],
Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
comp, flags, &buffer);
floodFillGrad_CnIR<int, uchar, int, Diff32sC1>(
img, mask, seedPoint, nv_buf.i[0], newMaskVal,
Diff32sC1(ld_buf.i[0], ud_buf.i[0]),
&comp, flags, &buffer);
else if( type == CV_32SC3 )
icvFloodFillGrad_CnIR<cv::Vec3i, cv::Vec3i, Diff32sC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3i(nv_buf.i),
Diff32sC3(ld_buf.i, ud_buf.i),
comp, flags, &buffer);
floodFillGrad_CnIR<Vec3i, uchar, Vec3i, Diff32sC3>(
img, mask, seedPoint, Vec3i(nv_buf.i), newMaskVal,
Diff32sC3(ld_buf.i, ud_buf.i),
&comp, flags, &buffer);
else if( type == CV_32FC1 )
icvFloodFillGrad_CnIR<float, float, Diff32fC1>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, nv_buf.f[0],
Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
comp, flags, &buffer);
floodFillGrad_CnIR<float, uchar, float, Diff32fC1>(
img, mask, seedPoint, nv_buf.f[0], newMaskVal,
Diff32fC1(ld_buf.f[0], ud_buf.f[0]),
&comp, flags, &buffer);
else if( type == CV_32FC3 )
icvFloodFillGrad_CnIR<cv::Vec3f, cv::Vec3f, Diff32fC3>(
img->data.ptr, img->step, mask->data.ptr, mask->step,
size, seed_point, cv::Vec3f(nv_buf.f),
Diff32fC3(ld_buf.f, ud_buf.f),
comp, flags, &buffer);
floodFillGrad_CnIR<Vec3f, uchar, Vec3f, Diff32fC3>(
img, mask, seedPoint, Vec3f(nv_buf.f), newMaskVal,
Diff32fC3(ld_buf.f, ud_buf.f),
&comp, flags, &buffer);
else
CV_Error(CV_StsUnsupportedFormat, "");
if( rect )
*rect = comp.rect;
return comp.area;
}
int cv::floodFill( InputOutputArray _image, Point seedPoint,
Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
{
CvConnectedComp ccomp;
CvMat c_image = _image.getMat();
cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, 0);
if( rect )
*rect = ccomp.rect;
return cvRound(ccomp.area);
return floodFill(_image, Mat(), seedPoint, newVal, rect, loDiff, upDiff, flags);
}
int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
Point seedPoint, Scalar newVal, Rect* rect,
Scalar loDiff, Scalar upDiff, int flags )
CV_IMPL void
cvFloodFill( CvArr* arr, CvPoint seed_point,
CvScalar newVal, CvScalar lo_diff, CvScalar up_diff,
CvConnectedComp* comp, int flags, CvArr* maskarr )
{
CvConnectedComp ccomp;
CvMat c_image = _image.getMat(), c_mask = _mask.getMat();
cvFloodFill(&c_image, seedPoint, newVal, loDiff, upDiff, &ccomp, flags, c_mask.data.ptr ? &c_mask : 0);
if( rect )
*rect = ccomp.rect;
return cvRound(ccomp.area);
if( comp )
memset( comp, 0, sizeof(*comp) );
cv::Mat img = cv::cvarrToMat(arr), mask = cv::cvarrToMat(maskarr);
int area = cv::floodFill(img, mask, seed_point, newVal,
comp ? (cv::Rect*)&comp->rect : 0,
lo_diff, up_diff, flags );
if( comp )
{
comp->area = area;
comp->value = newVal;
}
}
/* End of file. */

@ -2891,10 +2891,10 @@ class RemapInvoker :
{
public:
RemapInvoker(const Mat& _src, Mat& _dst, const Mat *_m1,
const Mat *_m2, int _interpolation, int _borderType, const Scalar &_borderValue,
const Mat *_m2, int _borderType, const Scalar &_borderValue,
int _planar_input, RemapNNFunc _nnfunc, RemapFunc _ifunc, const void *_ctab) :
ParallelLoopBody(), src(&_src), dst(&_dst), m1(_m1), m2(_m2),
interpolation(_interpolation), borderType(_borderType), borderValue(_borderValue),
borderType(_borderType), borderValue(_borderValue),
planar_input(_planar_input), nnfunc(_nnfunc), ifunc(_ifunc), ctab(_ctab)
{
}
@ -3077,7 +3077,7 @@ private:
const Mat* src;
Mat* dst;
const Mat *m1, *m2;
int interpolation, borderType;
int borderType;
Scalar borderValue;
int planar_input;
RemapNNFunc nnfunc;
@ -3178,7 +3178,7 @@ void cv::remap( InputArray _src, OutputArray _dst,
planar_input = map1.channels() == 1;
}
RemapInvoker invoker(src, dst, m1, m2, interpolation,
RemapInvoker invoker(src, dst, m1, m2,
borderType, borderValue, planar_input, nnfunc, ifunc,
ctab);
parallel_for_(Range(0, dst.rows), invoker, dst.total()/(double)(1<<16));

@ -116,41 +116,12 @@ CvPyramid;
#define CV_SET( dst, val, len, idx ) \
for( (idx) = 0; (idx) < (len); (idx)++) (dst)[idx] = (val)
/* performs convolution of 2d floating-point array with 3x1, 1x3 or separable 3x3 mask */
void icvSepConvSmall3_32f( float* src, int src_step, float* dst, int dst_step,
CvSize src_size, const float* kx, const float* ky, float* buffer );
#undef CV_CALC_MIN
#define CV_CALC_MIN(a, b) if((a) > (b)) (a) = (b)
#undef CV_CALC_MAX
#define CV_CALC_MAX(a, b) if((a) < (b)) (a) = (b)
CvStatus CV_STDCALL
icvCopyReplicateBorder_8u( const uchar* src, int srcstep, CvSize srcroi,
uchar* dst, int dststep, CvSize dstroi,
int left, int right, int cn, const uchar* value = 0 );
CvStatus CV_STDCALL icvGetRectSubPix_8u_C1R
( const uchar* src, int src_step, CvSize src_size,
uchar* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetRectSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetRectSubPix_32f_C1R
( const float* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, CvPoint2D32f center );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u_C1R
( const uchar* src, int src_step, CvSize src_size,
uchar* dst, int dst_step, CvSize win_size, const float *matrix );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_8u32f_C1R
( const uchar* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, const float *matrix );
CvStatus CV_STDCALL icvGetQuadrangleSubPix_32f_C1R
( const float* src, int src_step, CvSize src_size,
float* dst, int dst_step, CvSize win_size, const float *matrix );
#include "_geom.h"
#endif /*__OPENCV_CV_INTERNAL_H_*/

File diff suppressed because it is too large Load Diff

@ -699,7 +699,6 @@ public:
private:
Mat src;
Mat dst;
int nStripes;
double thresh;
double maxval;

@ -490,6 +490,7 @@ _exit_:
comp[2] = r.y;
comp[3] = r.width - r.x + 1;
comp[4] = r.height - r.y + 1;
#if 0
if( mask_only )
{
double t = area ? 1./area : 0;
@ -500,6 +501,11 @@ _exit_:
comp[5] = s0;
comp[6] = s1;
comp[7] = s2;
#else
comp[5] = new_val.val[0];
comp[6] = new_val.val[1];
comp[7] = new_val.val[2];
#endif
comp[8] = 0;
}