Merge pull request #3935 from vpisarev:extending_hal_part1
This commit is contained in:
@@ -53,6 +53,7 @@
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include "opencv2/core/cvstd.hpp"
|
||||
#include "opencv2/hal.hpp"
|
||||
|
||||
namespace cv
|
||||
{
|
||||
@@ -400,136 +401,6 @@ configurations while CV_DbgAssert is only retained in the Debug configuration.
|
||||
# define CV_DbgAssert(expr)
|
||||
#endif
|
||||
|
||||
|
||||
/////////////// saturate_cast (used in image & signal processing) ///////////////////
|
||||
|
||||
/**
|
||||
Template function for accurate conversion from one primitive type to another.
|
||||
|
||||
The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\<T\>()
|
||||
and others. They perform an efficient and accurate conversion from one primitive type to another
|
||||
(see the introduction chapter). saturate in the name means that when the input value v is out of the
|
||||
range of the target type, the result is not formed just by taking low bits of the input, but instead
|
||||
the value is clipped. For example:
|
||||
@code
|
||||
uchar a = saturate_cast<uchar>(-100); // a = 0 (UCHAR_MIN)
|
||||
short b = saturate_cast<short>(33333.33333); // b = 32767 (SHRT_MAX)
|
||||
@endcode
|
||||
Such clipping is done when the target type is unsigned char , signed char , unsigned short or
|
||||
signed short . For 32-bit integers, no clipping is done.
|
||||
|
||||
When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit),
|
||||
the floating-point value is first rounded to the nearest integer and then clipped if needed (when
|
||||
the target type is 8- or 16-bit).
|
||||
|
||||
This operation is used in the simplest or most complex image processing functions in OpenCV.
|
||||
|
||||
@param v Function parameter.
|
||||
@sa add, subtract, multiply, divide, Mat::convertTo
|
||||
*/
|
||||
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(int64 v) { return _Tp(v); }
|
||||
/** @overload */
|
||||
template<typename _Tp> static inline _Tp saturate_cast(uint64 v) { return _Tp(v); }
|
||||
|
||||
//! @cond IGNORED
|
||||
|
||||
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
|
||||
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
|
||||
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
|
||||
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
|
||||
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
|
||||
template<> inline uchar saturate_cast<uchar>(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
|
||||
template<> inline uchar saturate_cast<uchar>(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); }
|
||||
|
||||
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
|
||||
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
|
||||
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
|
||||
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
|
||||
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
|
||||
template<> inline schar saturate_cast<schar>(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
|
||||
template<> inline schar saturate_cast<schar>(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); }
|
||||
|
||||
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
|
||||
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
|
||||
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
|
||||
template<> inline ushort saturate_cast<ushort>(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
|
||||
template<> inline ushort saturate_cast<ushort>(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); }
|
||||
|
||||
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
|
||||
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
|
||||
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
|
||||
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
|
||||
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
|
||||
template<> inline short saturate_cast<short>(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
|
||||
template<> inline short saturate_cast<short>(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); }
|
||||
|
||||
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
|
||||
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
|
||||
|
||||
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
|
||||
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
|
||||
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
|
||||
|
||||
//! @endcond
|
||||
|
||||
//////////////////////////////// low-level functions ////////////////////////////////
|
||||
|
||||
CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n);
|
||||
CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n);
|
||||
|
||||
CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n);
|
||||
CV_EXPORTS float normL1_(const float* a, const float* b, int n);
|
||||
CV_EXPORTS float normL2Sqr_(const float* a, const float* b, int n);
|
||||
|
||||
CV_EXPORTS void exp(const float* src, float* dst, int n);
|
||||
CV_EXPORTS void log(const float* src, float* dst, int n);
|
||||
|
||||
CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees);
|
||||
CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n);
|
||||
|
||||
/** @brief Computes the cube root of an argument.
|
||||
|
||||
The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
|
||||
NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
|
||||
single-precision data.
|
||||
@param val A function argument.
|
||||
*/
|
||||
CV_EXPORTS_W float cubeRoot(float val);
|
||||
|
||||
/** @brief Calculates the angle of a 2D vector in degrees.
|
||||
|
||||
The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
|
||||
in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
|
||||
@param x x-coordinate of the vector.
|
||||
@param y y-coordinate of the vector.
|
||||
*/
|
||||
CV_EXPORTS_W float fastAtan2(float y, float x);
|
||||
|
||||
/*
|
||||
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
|
||||
* bit count of A exclusive XOR'ed with B
|
||||
@@ -549,6 +420,11 @@ typedef Hamming HammingLUT;
|
||||
|
||||
/////////////////////////////////// inline norms ////////////////////////////////////
|
||||
|
||||
template<typename _Tp> inline _Tp cv_abs(_Tp x) { return std::abs(x); }
|
||||
inline int cv_abs(uchar x) { return x; }
|
||||
inline int cv_abs(schar x) { return std::abs(x); }
|
||||
inline int cv_abs(ushort x) { return x; }
|
||||
inline int cv_abs(short x) { return std::abs(x); }
|
||||
|
||||
template<typename _Tp, typename _AccTp> static inline
|
||||
_AccTp normL2Sqr(const _Tp* a, int n)
|
||||
@@ -578,12 +454,12 @@ _AccTp normL1(const _Tp* a, int n)
|
||||
#if CV_ENABLE_UNROLLED
|
||||
for(; i <= n - 4; i += 4 )
|
||||
{
|
||||
s += (_AccTp)std::abs(a[i]) + (_AccTp)std::abs(a[i+1]) +
|
||||
(_AccTp)std::abs(a[i+2]) + (_AccTp)std::abs(a[i+3]);
|
||||
s += (_AccTp)cv_abs(a[i]) + (_AccTp)cv_abs(a[i+1]) +
|
||||
(_AccTp)cv_abs(a[i+2]) + (_AccTp)cv_abs(a[i+3]);
|
||||
}
|
||||
#endif
|
||||
for( ; i < n; i++ )
|
||||
s += std::abs(a[i]);
|
||||
s += cv_abs(a[i]);
|
||||
return s;
|
||||
}
|
||||
|
||||
@@ -592,7 +468,7 @@ _AccTp normInf(const _Tp* a, int n)
|
||||
{
|
||||
_AccTp s = 0;
|
||||
for( int i = 0; i < n; i++ )
|
||||
s = std::max(s, (_AccTp)std::abs(a[i]));
|
||||
s = std::max(s, (_AccTp)cv_abs(a[i]));
|
||||
return s;
|
||||
}
|
||||
|
||||
@@ -616,11 +492,10 @@ _AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n)
|
||||
return s;
|
||||
}
|
||||
|
||||
template<> inline
|
||||
float normL2Sqr(const float* a, const float* b, int n)
|
||||
inline float normL2Sqr(const float* a, const float* b, int n)
|
||||
{
|
||||
if( n >= 8 )
|
||||
return normL2Sqr_(a, b, n);
|
||||
return hal::normL2Sqr_(a, b, n);
|
||||
float s = 0;
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
@@ -650,11 +525,10 @@ _AccTp normL1(const _Tp* a, const _Tp* b, int n)
|
||||
return s;
|
||||
}
|
||||
|
||||
template<> inline
|
||||
float normL1(const float* a, const float* b, int n)
|
||||
inline float normL1(const float* a, const float* b, int n)
|
||||
{
|
||||
if( n >= 8 )
|
||||
return normL1_(a, b, n);
|
||||
return hal::normL1_(a, b, n);
|
||||
float s = 0;
|
||||
for( int i = 0; i < n; i++ )
|
||||
{
|
||||
@@ -664,10 +538,9 @@ float normL1(const float* a, const float* b, int n)
|
||||
return s;
|
||||
}
|
||||
|
||||
template<> inline
|
||||
int normL1(const uchar* a, const uchar* b, int n)
|
||||
inline int normL1(const uchar* a, const uchar* b, int n)
|
||||
{
|
||||
return normL1_(a, b, n);
|
||||
return hal::normL1_(a, b, n);
|
||||
}
|
||||
|
||||
template<typename _Tp, typename _AccTp> static inline
|
||||
@@ -682,6 +555,23 @@ _AccTp normInf(const _Tp* a, const _Tp* b, int n)
|
||||
return s;
|
||||
}
|
||||
|
||||
/** @brief Computes the cube root of an argument.
|
||||
|
||||
The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly.
|
||||
NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for
|
||||
single-precision data.
|
||||
@param val A function argument.
|
||||
*/
|
||||
CV_EXPORTS_W float cubeRoot(float val);
|
||||
|
||||
/** @brief Calculates the angle of a 2D vector in degrees.
|
||||
|
||||
The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured
|
||||
in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees.
|
||||
@param x x-coordinate of the vector.
|
||||
@param y y-coordinate of the vector.
|
||||
*/
|
||||
CV_EXPORTS_W float fastAtan2(float y, float x);
|
||||
|
||||
////////////////// forward declarations for important OpenCV types //////////////////
|
||||
|
||||
|
@@ -70,16 +70,6 @@
|
||||
# define CV_EXPORTS
|
||||
#endif
|
||||
|
||||
#ifndef CV_INLINE
|
||||
# if defined __cplusplus
|
||||
# define CV_INLINE static inline
|
||||
# elif defined _MSC_VER
|
||||
# define CV_INLINE __inline
|
||||
# else
|
||||
# define CV_INLINE static
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef CV_EXTERN_C
|
||||
# ifdef __cplusplus
|
||||
# define CV_EXTERN_C extern "C"
|
||||
@@ -186,19 +176,6 @@
|
||||
#define CV_ELEM_SIZE(type) \
|
||||
(CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3))
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* fast math *
|
||||
\****************************************************************************************/
|
||||
|
||||
#if defined __BORLANDC__
|
||||
# include <fastmath.h>
|
||||
#elif defined __cplusplus
|
||||
# include <cmath>
|
||||
#else
|
||||
# include <math.h>
|
||||
#endif
|
||||
|
||||
#ifndef MIN
|
||||
# define MIN(a,b) ((a) > (b) ? (b) : (a))
|
||||
#endif
|
||||
@@ -207,164 +184,6 @@
|
||||
# define MAX(a,b) ((a) < (b) ? (b) : (a))
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_TEGRA_OPTIMIZATION
|
||||
# include "tegra_round.hpp"
|
||||
#endif
|
||||
|
||||
//! @addtogroup core_utils
|
||||
//! @{
|
||||
|
||||
#if CV_VFP
|
||||
// 1. general scheme
|
||||
#define ARM_ROUND(_value, _asm_string) \
|
||||
int res; \
|
||||
float temp; \
|
||||
asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \
|
||||
return res;
|
||||
// 2. version for double
|
||||
#ifdef __clang__
|
||||
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]")
|
||||
#else
|
||||
#define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]")
|
||||
#endif
|
||||
// 3. version for float
|
||||
#define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]")
|
||||
#endif // CV_VFP
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer
|
||||
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int cvRound( double value )
|
||||
{
|
||||
#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
return _mm_cvtsd_si32(t);
|
||||
#elif defined _MSC_VER && defined _M_IX86
|
||||
int t;
|
||||
__asm
|
||||
{
|
||||
fld value;
|
||||
fistp t;
|
||||
}
|
||||
return t;
|
||||
#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
|
||||
TEGRA_ROUND_DBL(value);
|
||||
#elif defined CV_ICC || defined __GNUC__
|
||||
# if CV_VFP
|
||||
ARM_ROUND_DBL(value)
|
||||
# else
|
||||
return (int)lrint(value);
|
||||
# endif
|
||||
#else
|
||||
double intpart, fractpart;
|
||||
fractpart = modf(value, &intpart);
|
||||
if ((fabs(fractpart) != 0.5) || ((((int)intpart) % 2) != 0))
|
||||
return (int)(value + (value >= 0 ? 0.5 : -0.5));
|
||||
else
|
||||
return (int)intpart;
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvRound(float value)
|
||||
{
|
||||
#if defined ANDROID && (defined CV_ICC || defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION
|
||||
TEGRA_ROUND_FLT(value);
|
||||
#elif CV_VFP && !defined HAVE_TEGRA_OPTIMIZATION
|
||||
ARM_ROUND_FLT(value)
|
||||
#else
|
||||
return cvRound((double)value);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @overload */
|
||||
CV_INLINE int cvRound(int value)
|
||||
{
|
||||
return value;
|
||||
}
|
||||
|
||||
#endif // __cplusplus
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer not larger than the original.
|
||||
|
||||
The function computes an integer i such that:
|
||||
\f[i \le \texttt{value} < i+1\f]
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int cvFloor( double value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
int i = _mm_cvtsd_si32(t);
|
||||
return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i)));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i - (i > value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(value - i);
|
||||
return i - (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @brief Rounds floating-point number to the nearest integer not larger than the original.
|
||||
|
||||
The function computes an integer i such that:
|
||||
\f[i \le \texttt{value} < i+1\f]
|
||||
@param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the
|
||||
result is not defined.
|
||||
*/
|
||||
CV_INLINE int cvCeil( double value )
|
||||
{
|
||||
#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__)
|
||||
__m128d t = _mm_set_sd( value );
|
||||
int i = _mm_cvtsd_si32(t);
|
||||
return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t));
|
||||
#elif defined __GNUC__
|
||||
int i = (int)value;
|
||||
return i + (i < value);
|
||||
#else
|
||||
int i = cvRound(value);
|
||||
float diff = (float)(i - value);
|
||||
return i + (diff < 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
/** @brief Determines if the argument is Not A Number.
|
||||
|
||||
@param value The input floating-point value
|
||||
|
||||
The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0
|
||||
otherwise. */
|
||||
CV_INLINE int cvIsNaN( double value )
|
||||
{
|
||||
union { uint64 u; double f; } ieee754;
|
||||
ieee754.f = value;
|
||||
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) +
|
||||
((unsigned)ieee754.u != 0) > 0x7ff00000;
|
||||
}
|
||||
|
||||
/** @brief Determines if the argument is Infinity.
|
||||
|
||||
@param value The input floating-point value
|
||||
|
||||
The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard)
|
||||
and 0 otherwise. */
|
||||
CV_INLINE int cvIsInf( double value )
|
||||
{
|
||||
union { uint64 u; double f; } ieee754;
|
||||
ieee754.f = value;
|
||||
return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 &&
|
||||
(unsigned)ieee754.u == 0;
|
||||
}
|
||||
|
||||
//! @} core_utils
|
||||
|
||||
/****************************************************************************************\
|
||||
* exchange-add operation for atomic operations on reference counters *
|
||||
\****************************************************************************************/
|
||||
|
@@ -427,7 +427,7 @@ template<typename _Tp, int m> struct Matx_DetOp
|
||||
double operator ()(const Matx<_Tp, m, m>& a) const
|
||||
{
|
||||
Matx<_Tp, m, m> temp = a;
|
||||
double p = LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0);
|
||||
double p = hal::LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0);
|
||||
if( p == 0 )
|
||||
return p;
|
||||
for( int i = 0; i < m; i++ )
|
||||
|
@@ -72,9 +72,9 @@ template<typename _Tp, int m> struct Matx_FastInvOp
|
||||
b(i, i) = (_Tp)1;
|
||||
|
||||
if( method == DECOMP_CHOLESKY )
|
||||
return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m);
|
||||
return hal::Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m);
|
||||
|
||||
return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0;
|
||||
return hal::LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0;
|
||||
}
|
||||
};
|
||||
|
||||
|
@@ -136,14 +136,6 @@ namespace cv
|
||||
/* the alignment of all the allocated buffers */
|
||||
#define CV_MALLOC_ALIGN 16
|
||||
|
||||
#ifdef __GNUC__
|
||||
# define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x)))
|
||||
#elif defined _MSC_VER
|
||||
# define CV_DECL_ALIGNED(x) __declspec(align(x))
|
||||
#else
|
||||
# define CV_DECL_ALIGNED(x)
|
||||
#endif
|
||||
|
||||
/* IEEE754 constants and macros */
|
||||
#define CV_TOGGLE_FLT(x) ((x)^((int)(x) < 0 ? 0x7fffffff : 0))
|
||||
#define CV_TOGGLE_DBL(x) ((x)^((int64)(x) < 0 ? CV_BIG_INT(0x7fffffffffffffff) : 0))
|
||||
|
@@ -113,22 +113,6 @@ bytes of the header. In C++ interface the role of CvArr is played by InputArray
|
||||
*/
|
||||
typedef void CvArr;
|
||||
|
||||
typedef union Cv32suf
|
||||
{
|
||||
int i;
|
||||
unsigned u;
|
||||
float f;
|
||||
}
|
||||
Cv32suf;
|
||||
|
||||
typedef union Cv64suf
|
||||
{
|
||||
int64 i;
|
||||
uint64 u;
|
||||
double f;
|
||||
}
|
||||
Cv64suf;
|
||||
|
||||
typedef int CVStatus;
|
||||
|
||||
/** @see cv::Error::Code */
|
||||
|
Reference in New Issue
Block a user