reworked nearly all of the OpenCV tests (except for opencv_gpu tests) - they now use the Google Test engine.
This commit is contained in:
122
modules/features2d/test/test_bruteforcematcher.cpp
Normal file
122
modules/features2d/test/test_bruteforcematcher.cpp
Normal file
@@ -0,0 +1,122 @@
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#if 0
|
||||
using namespace cv;
|
||||
|
||||
class BruteForceMatcherTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
BruteForceMatcherTest();
|
||||
protected:
|
||||
void run( int );
|
||||
};
|
||||
|
||||
struct CV_EXPORTS L2Fake : public L2<float>
|
||||
{
|
||||
};
|
||||
|
||||
BruteForceMatcherTest::BruteForceMatcherTest() : cvtest::BaseTest( "BruteForceMatcher", "BruteForceMatcher::matchImpl")
|
||||
{
|
||||
support_testing_modes = cvtest::TS::TIMING_MODE;
|
||||
}
|
||||
|
||||
void BruteForceMatcherTest::run( int )
|
||||
{
|
||||
const int dimensions = 64;
|
||||
const int descriptorsNumber = 5000;
|
||||
|
||||
Mat train = Mat( descriptorsNumber, dimensions, CV_32FC1);
|
||||
Mat query = Mat( descriptorsNumber, dimensions, CV_32FC1);
|
||||
|
||||
Mat permutation( 1, descriptorsNumber, CV_32SC1 );
|
||||
for( int i=0;i<descriptorsNumber;i++ )
|
||||
permutation.at<int>( 0, i ) = i;
|
||||
|
||||
//RNG rng = RNG( cvGetTickCount() );
|
||||
RNG rng = RNG( *ts->get_rng() );
|
||||
randShuffle( permutation, 1, &rng );
|
||||
|
||||
float boundary = 500.f;
|
||||
for( int row=0;row<descriptorsNumber;row++ )
|
||||
{
|
||||
for( int col=0;col<dimensions;col++ )
|
||||
{
|
||||
int bit = rng( 2 );
|
||||
train.at<float>( permutation.at<int>( 0, row ), col ) = bit*boundary + rng.uniform( 0.f, boundary );
|
||||
query.at<float>( row, col ) = bit*boundary + rng.uniform( 0.f, boundary );
|
||||
}
|
||||
}
|
||||
|
||||
vector<DMatch> specMatches, genericMatches;
|
||||
BruteForceMatcher<L2<float> > specMatcher;
|
||||
BruteForceMatcher<L2Fake > genericMatcher;
|
||||
|
||||
int64 time0 = cvGetTickCount();
|
||||
specMatcher.match( query, train, specMatches );
|
||||
int64 time1 = cvGetTickCount();
|
||||
genericMatcher.match( query, train, genericMatches );
|
||||
int64 time2 = cvGetTickCount();
|
||||
|
||||
float specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency();
|
||||
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time s: %f, us per pair: %f\n",
|
||||
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||||
|
||||
float genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency();
|
||||
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time s: %f, us per pair: %f\n",
|
||||
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||||
|
||||
if( (int)specMatches.size() != descriptorsNumber || (int)genericMatches.size() != descriptorsNumber )
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
for( int i=0;i<descriptorsNumber;i++ )
|
||||
{
|
||||
float epsilon = 0.01f;
|
||||
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon &&
|
||||
specMatches[i].queryIdx == genericMatches[i].queryIdx &&
|
||||
specMatches[i].trainIdx == genericMatches[i].trainIdx;
|
||||
if( !isEquiv || specMatches[i].trainIdx != permutation.at<int>( 0, i ) )
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Test mask
|
||||
Mat mask( query.rows, train.rows, CV_8UC1 );
|
||||
rng.fill( mask, RNG::UNIFORM, 0, 2 );
|
||||
|
||||
|
||||
time0 = cvGetTickCount();
|
||||
specMatcher.match( query, train, specMatches, mask );
|
||||
time1 = cvGetTickCount();
|
||||
genericMatcher.match( query, train, genericMatches, mask );
|
||||
time2 = cvGetTickCount();
|
||||
|
||||
specMatcherTime = float(time1 - time0)/(float)cvGetTickFrequency();
|
||||
ts->printf( cvtest::TS::LOG, "Matching by matrix multiplication time with mask s: %f, us per pair: %f\n",
|
||||
specMatcherTime*1e-6, specMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||||
|
||||
genericMatcherTime = float(time2 - time1)/(float)cvGetTickFrequency();
|
||||
ts->printf( cvtest::TS::LOG, "Matching without matrix multiplication time with mask s: %f, us per pair: %f\n",
|
||||
genericMatcherTime*1e-6, genericMatcherTime/( descriptorsNumber*descriptorsNumber ) );
|
||||
|
||||
if( specMatches.size() != genericMatches.size() )
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
||||
|
||||
for( size_t i=0;i<specMatches.size();i++ )
|
||||
{
|
||||
//float epsilon = 1e-2;
|
||||
float epsilon = 10000000;
|
||||
bool isEquiv = fabs( specMatches[i].distance - genericMatches[i].distance ) < epsilon &&
|
||||
specMatches[i].queryIdx == genericMatches[i].queryIdx &&
|
||||
specMatches[i].trainIdx == genericMatches[i].trainIdx;
|
||||
if( !isEquiv )
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH );
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
BruteForceMatcherTest taBruteForceMatcherTest;
|
||||
#endif
|
1186
modules/features2d/test/test_detectordescriptor_evaluation.cpp
Normal file
1186
modules/features2d/test/test_detectordescriptor_evaluation.cpp
Normal file
File diff suppressed because it is too large
Load Diff
317
modules/features2d/test/test_detectors.cpp
Normal file
317
modules/features2d/test/test_detectors.cpp
Normal file
@@ -0,0 +1,317 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include <string>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <fstream>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
#include <iterator>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
class CV_DetectorsTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_DetectorsTest();
|
||||
~CV_DetectorsTest();
|
||||
protected:
|
||||
void run(int);
|
||||
template <class T> bool testDetector(const Mat& img, const T& detector, vector<KeyPoint>& expected);
|
||||
|
||||
void LoadExpected(const string& file, vector<KeyPoint>& out);
|
||||
};
|
||||
|
||||
CV_DetectorsTest::CV_DetectorsTest()
|
||||
{
|
||||
}
|
||||
CV_DetectorsTest::~CV_DetectorsTest() {}
|
||||
|
||||
void getRotation(const Mat& img, Mat& aff, Mat& out)
|
||||
{
|
||||
Point center(img.cols/2, img.rows/2);
|
||||
aff = getRotationMatrix2D(center, 30, 1);
|
||||
warpAffine( img, out, aff, img.size());
|
||||
}
|
||||
|
||||
void getZoom(const Mat& img, Mat& aff, Mat& out)
|
||||
{
|
||||
const double mult = 1.2;
|
||||
|
||||
aff.create(2, 3, CV_64F);
|
||||
double *data = aff.ptr<double>();
|
||||
data[0] = mult; data[1] = 0; data[2] = 0;
|
||||
data[3] = 0; data[4] = mult; data[5] = 0;
|
||||
|
||||
warpAffine( img, out, aff, img.size());
|
||||
}
|
||||
|
||||
void getBlur(const Mat& img, Mat& aff, Mat& out)
|
||||
{
|
||||
aff.create(2, 3, CV_64F);
|
||||
double *data = aff.ptr<double>();
|
||||
data[0] = 1; data[1] = 0; data[2] = 0;
|
||||
data[3] = 0; data[4] = 1; data[5] = 0;
|
||||
|
||||
GaussianBlur(img, out, Size(5, 5), 2);
|
||||
}
|
||||
|
||||
void getBrightness(const Mat& img, Mat& aff, Mat& out)
|
||||
{
|
||||
aff.create(2, 3, CV_64F);
|
||||
double *data = aff.ptr<double>();
|
||||
data[0] = 1; data[1] = 0; data[2] = 0;
|
||||
data[3] = 0; data[4] = 1; data[5] = 0;
|
||||
|
||||
add(img, Mat(img.size(), img.type(), Scalar(15)), out);
|
||||
}
|
||||
|
||||
void showOrig(const Mat& img, const vector<KeyPoint>& orig_pts)
|
||||
{
|
||||
|
||||
Mat img_color;
|
||||
cvtColor(img, img_color, CV_GRAY2BGR);
|
||||
|
||||
for(size_t i = 0; i < orig_pts.size(); ++i)
|
||||
circle(img_color, orig_pts[i].pt, (int)orig_pts[i].size/2, CV_RGB(0, 255, 0));
|
||||
|
||||
namedWindow("O"); imshow("O", img_color);
|
||||
}
|
||||
|
||||
void show(const string& name, const Mat& new_img, const vector<KeyPoint>& new_pts, const vector<KeyPoint>& transf_pts)
|
||||
{
|
||||
|
||||
Mat new_img_color;
|
||||
cvtColor(new_img, new_img_color, CV_GRAY2BGR);
|
||||
|
||||
for(size_t i = 0; i < transf_pts.size(); ++i)
|
||||
circle(new_img_color, transf_pts[i].pt, (int)transf_pts[i].size/2, CV_RGB(255, 0, 0));
|
||||
|
||||
for(size_t i = 0; i < new_pts.size(); ++i)
|
||||
circle(new_img_color, new_pts[i].pt, (int)new_pts[i].size/2, CV_RGB(0, 0, 255));
|
||||
|
||||
namedWindow(name + "_T"); imshow(name + "_T", new_img_color);
|
||||
}
|
||||
|
||||
struct WrapPoint
|
||||
{
|
||||
const double* R;
|
||||
WrapPoint(const Mat& rmat) : R(rmat.ptr<double>()) { };
|
||||
|
||||
KeyPoint operator()(const KeyPoint& kp) const
|
||||
{
|
||||
KeyPoint res = kp;
|
||||
res.pt.x = static_cast<float>(kp.pt.x * R[0] + kp.pt.y * R[1] + R[2]);
|
||||
res.pt.y = static_cast<float>(kp.pt.x * R[3] + kp.pt.y * R[4] + R[5]);
|
||||
return res;
|
||||
}
|
||||
};
|
||||
|
||||
struct sortByR { bool operator()(const KeyPoint& kp1, const KeyPoint& kp2) { return norm(kp1.pt) < norm(kp2.pt); } };
|
||||
|
||||
template <class T> bool CV_DetectorsTest::testDetector(const Mat& img, const T& detector, vector<KeyPoint>& exp)
|
||||
{
|
||||
vector<KeyPoint> orig_kpts;
|
||||
detector(img, orig_kpts);
|
||||
|
||||
typedef void (*TransfFunc )(const Mat&, Mat&, Mat& FransfFunc);
|
||||
const TransfFunc transfFunc[] = { getRotation, getZoom, getBlur, getBrightness };
|
||||
//const string names[] = { "Rotation", "Zoom", "Blur", "Brightness" };
|
||||
const size_t case_num = sizeof(transfFunc)/sizeof(transfFunc[0]);
|
||||
|
||||
vector<Mat> affs(case_num);
|
||||
vector<Mat> new_imgs(case_num);
|
||||
|
||||
vector< vector<KeyPoint> > new_kpts(case_num);
|
||||
vector< vector<KeyPoint> > transf_kpts(case_num);
|
||||
|
||||
//showOrig(img, orig_kpts);
|
||||
for(size_t i = 0; i < case_num; ++i)
|
||||
{
|
||||
transfFunc[i](img, affs[i], new_imgs[i]);
|
||||
detector(new_imgs[i], new_kpts[i]);
|
||||
transform(orig_kpts.begin(), orig_kpts.end(), back_inserter(transf_kpts[i]), WrapPoint(affs[i]));
|
||||
//show(names[i], new_imgs[i], new_kpts[i], transf_kpts[i]);
|
||||
}
|
||||
|
||||
const float thres = 3;
|
||||
const float nthres = 3;
|
||||
|
||||
vector<KeyPoint> result;
|
||||
for(size_t i = 0; i < orig_kpts.size(); ++i)
|
||||
{
|
||||
const KeyPoint& okp = orig_kpts[i];
|
||||
int foundCounter = 0;
|
||||
for(size_t j = 0; j < case_num; ++j)
|
||||
{
|
||||
const KeyPoint& tkp = transf_kpts[j][i];
|
||||
|
||||
size_t k = 0;
|
||||
|
||||
for(; k < new_kpts[j].size(); ++k)
|
||||
if (norm(new_kpts[j][k].pt - tkp.pt) < nthres && fabs(new_kpts[j][k].size - tkp.size) < thres)
|
||||
break;
|
||||
|
||||
if (k != new_kpts[j].size())
|
||||
++foundCounter;
|
||||
|
||||
}
|
||||
if (foundCounter == (int)case_num)
|
||||
result.push_back(okp);
|
||||
}
|
||||
|
||||
sort(result.begin(), result.end(), sortByR());
|
||||
sort(exp.begin(), exp.end(), sortByR());
|
||||
|
||||
if (result.size() != exp.size())
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
return false;
|
||||
}
|
||||
|
||||
int foundCounter1 = 0;
|
||||
for(size_t i = 0; i < exp.size(); ++i)
|
||||
{
|
||||
const KeyPoint& e = exp[i];
|
||||
size_t j = 0;
|
||||
for(; j < result.size(); ++j)
|
||||
{
|
||||
const KeyPoint& r = result[i];
|
||||
if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
|
||||
break;
|
||||
}
|
||||
if (j != result.size())
|
||||
++foundCounter1;
|
||||
}
|
||||
|
||||
int foundCounter2 = 0;
|
||||
for(size_t i = 0; i < result.size(); ++i)
|
||||
{
|
||||
const KeyPoint& r = result[i];
|
||||
size_t j = 0;
|
||||
for(; j < exp.size(); ++j)
|
||||
{
|
||||
const KeyPoint& e = exp[i];
|
||||
if (norm(r.pt-e.pt) < nthres && fabs(r.size - e.size) < thres)
|
||||
break;
|
||||
}
|
||||
if (j != exp.size())
|
||||
++foundCounter2;
|
||||
}
|
||||
//showOrig(img, result); waitKey();
|
||||
|
||||
const float errorRate = 0.9f;
|
||||
if (float(foundCounter1)/exp.size() < errorRate || float(foundCounter2)/result.size() < errorRate)
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_MISMATCH);
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
struct SurfNoMaskWrap
|
||||
{
|
||||
const SURF& detector;
|
||||
SurfNoMaskWrap(const SURF& surf) : detector(surf) {}
|
||||
SurfNoMaskWrap& operator=(const SurfNoMaskWrap&);
|
||||
void operator()(const Mat& img, vector<KeyPoint>& kpts) const { detector(img, Mat(), kpts); }
|
||||
};
|
||||
|
||||
void CV_DetectorsTest::LoadExpected(const string& file, vector<KeyPoint>& out)
|
||||
{
|
||||
Mat mat_exp;
|
||||
FileStorage fs(file, FileStorage::READ);
|
||||
if (fs.isOpened())
|
||||
{
|
||||
read( fs["ResultVectorData"], mat_exp, Mat() );
|
||||
out.resize(mat_exp.cols / sizeof(KeyPoint));
|
||||
copy(mat_exp.ptr<KeyPoint>(), mat_exp.ptr<KeyPoint>() + out.size(), out.begin());
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA);
|
||||
out.clear();
|
||||
}
|
||||
}
|
||||
|
||||
void CV_DetectorsTest::run( int /*start_from*/ )
|
||||
{
|
||||
Mat img = imread(string(ts->get_data_path()) + "shared/graffiti.png", 0);
|
||||
|
||||
if (img.empty())
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
Mat to_test(img.size() * 2, img.type(), Scalar(0));
|
||||
Mat roi = to_test(Rect(img.rows/2, img.cols/2, img.cols, img.rows));
|
||||
img.copyTo(roi);
|
||||
GaussianBlur(to_test, to_test, Size(3, 3), 1.5);
|
||||
|
||||
vector<KeyPoint> exp;
|
||||
LoadExpected(string(ts->get_data_path()) + "detectors/surf.xml", exp);
|
||||
if (exp.empty())
|
||||
return;
|
||||
|
||||
if (!testDetector(to_test, SurfNoMaskWrap(SURF(1536+512+512, 2)), exp))
|
||||
return;
|
||||
|
||||
LoadExpected(string(ts->get_data_path()) + "detectors/star.xml", exp);
|
||||
if (exp.empty())
|
||||
return;
|
||||
|
||||
if (!testDetector(to_test, StarDetector(45, 30, 10, 8, 5), exp))
|
||||
return;
|
||||
|
||||
ts->set_failed_test_info( cvtest::TS::OK);
|
||||
}
|
||||
|
||||
|
||||
TEST(Features2d_Detectors, regression) { CV_DetectorsTest test; test.safe_run(); }
|
||||
|
||||
|
||||
|
126
modules/features2d/test/test_fast.cpp
Normal file
126
modules/features2d/test/test_fast.cpp
Normal file
@@ -0,0 +1,126 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv;
|
||||
|
||||
class CV_FastTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_FastTest();
|
||||
~CV_FastTest();
|
||||
protected:
|
||||
void run(int);
|
||||
};
|
||||
|
||||
CV_FastTest::CV_FastTest() {}
|
||||
CV_FastTest::~CV_FastTest() {}
|
||||
|
||||
void CV_FastTest::run( int )
|
||||
{
|
||||
Mat image1 = imread(string(ts->get_data_path()) + "inpaint/orig.jpg");
|
||||
Mat image2 = imread(string(ts->get_data_path()) + "cameracalibration/chess9.jpg");
|
||||
string xml = string(ts->get_data_path()) + "fast/result.xml";
|
||||
|
||||
if (image1.empty() || image2.empty())
|
||||
{
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
||||
return;
|
||||
}
|
||||
|
||||
Mat gray1, gray2;
|
||||
cvtColor(image1, gray1, CV_BGR2GRAY);
|
||||
cvtColor(image2, gray2, CV_BGR2GRAY);
|
||||
|
||||
vector<KeyPoint> keypoints1;
|
||||
vector<KeyPoint> keypoints2;
|
||||
FAST(gray1, keypoints1, 30);
|
||||
FAST(gray2, keypoints2, 30);
|
||||
|
||||
for(size_t i = 0; i < keypoints1.size(); ++i)
|
||||
{
|
||||
const KeyPoint& kp = keypoints1[i];
|
||||
cv::circle(image1, kp.pt, cvRound(kp.size/2), CV_RGB(255, 0, 0));
|
||||
}
|
||||
|
||||
for(size_t i = 0; i < keypoints2.size(); ++i)
|
||||
{
|
||||
const KeyPoint& kp = keypoints2[i];
|
||||
cv::circle(image2, kp.pt, cvRound(kp.size/2), CV_RGB(255, 0, 0));
|
||||
}
|
||||
|
||||
Mat kps1(1, (int)(keypoints1.size() * sizeof(KeyPoint)), CV_8U, &keypoints1[0]);
|
||||
Mat kps2(1, (int)(keypoints2.size() * sizeof(KeyPoint)), CV_8U, &keypoints2[0]);
|
||||
|
||||
FileStorage fs(xml, FileStorage::READ);
|
||||
if (!fs.isOpened())
|
||||
{
|
||||
fs.open(xml, FileStorage::WRITE);
|
||||
fs << "exp_kps1" << kps1;
|
||||
fs << "exp_kps2" << kps2;
|
||||
fs.release();
|
||||
}
|
||||
|
||||
if (!fs.isOpened())
|
||||
fs.open(xml, FileStorage::READ);
|
||||
|
||||
Mat exp_kps1, exp_kps2;
|
||||
read( fs["exp_kps1"], exp_kps1, Mat() );
|
||||
read( fs["exp_kps2"], exp_kps2, Mat() );
|
||||
fs.release();
|
||||
|
||||
if ( 0 != norm(exp_kps1, kps1, NORM_L2) || 0 != norm(exp_kps2, kps2, NORM_L2))
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
return;
|
||||
}
|
||||
|
||||
/* cv::namedWindow("Img1"); cv::imshow("Img1", image1);
|
||||
cv::namedWindow("Img2"); cv::imshow("Img2", image2);
|
||||
cv::waitKey(0);*/
|
||||
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
|
||||
TEST(Features2d_FAST, regression) { CV_FastTest test; test.safe_run(); }
|
||||
|
1038
modules/features2d/test/test_features2d.cpp
Normal file
1038
modules/features2d/test/test_features2d.cpp
Normal file
File diff suppressed because it is too large
Load Diff
3
modules/features2d/test/test_main.cpp
Normal file
3
modules/features2d/test/test_main.cpp
Normal file
@@ -0,0 +1,3 @@
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
CV_TEST_MAIN("cv")
|
203
modules/features2d/test/test_mser.cpp
Normal file
203
modules/features2d/test/test_mser.cpp
Normal file
@@ -0,0 +1,203 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
class CV_MserTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
CV_MserTest();
|
||||
protected:
|
||||
void run(int);
|
||||
int LoadBoxes(const char* path, vector<CvBox2D>& boxes);
|
||||
int SaveBoxes(const char* path, const vector<CvBox2D>& boxes);
|
||||
int CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff = 0.01f);
|
||||
};
|
||||
|
||||
CV_MserTest::CV_MserTest()
|
||||
{
|
||||
}
|
||||
|
||||
int CV_MserTest::LoadBoxes(const char* path, vector<CvBox2D>& boxes)
|
||||
{
|
||||
boxes.clear();
|
||||
FILE* f = fopen(path,"r");
|
||||
|
||||
if (f==NULL)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (!feof(f))
|
||||
{
|
||||
CvBox2D box;
|
||||
fscanf(f,"%f,%f,%f,%f,%f\n",&box.angle,&box.center.x,&box.center.y,&box.size.width,&box.size.height);
|
||||
boxes.push_back(box);
|
||||
}
|
||||
fclose(f);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int CV_MserTest::SaveBoxes(const char* path, const vector<CvBox2D>& boxes)
|
||||
{
|
||||
FILE* f = fopen(path,"w");
|
||||
if (f==NULL)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
for (int i=0;i<(int)boxes.size();i++)
|
||||
{
|
||||
fprintf(f,"%f,%f,%f,%f,%f\n",boxes[i].angle,boxes[i].center.x,boxes[i].center.y,boxes[i].size.width,boxes[i].size.height);
|
||||
}
|
||||
fclose(f);
|
||||
return 1;
|
||||
}
|
||||
|
||||
int CV_MserTest::CompareBoxes(const vector<CvBox2D>& boxes1,const vector<CvBox2D>& boxes2, float max_rel_diff)
|
||||
{
|
||||
if (boxes1.size() != boxes2.size())
|
||||
return 0;
|
||||
|
||||
for (int i=0; i<(int)boxes1.size();i++)
|
||||
{
|
||||
float rel_diff;
|
||||
if (!((boxes1[i].angle == 0.0f) && (abs(boxes2[i].angle) < max_rel_diff)))
|
||||
{
|
||||
rel_diff = abs(boxes1[i].angle-boxes2[i].angle)/abs(boxes1[i].angle);
|
||||
if (rel_diff > max_rel_diff)
|
||||
return i;
|
||||
}
|
||||
|
||||
if (!((boxes1[i].center.x == 0.0f) && (abs(boxes2[i].center.x) < max_rel_diff)))
|
||||
{
|
||||
rel_diff = abs(boxes1[i].center.x-boxes2[i].center.x)/abs(boxes1[i].center.x);
|
||||
if (rel_diff > max_rel_diff)
|
||||
return i;
|
||||
}
|
||||
|
||||
if (!((boxes1[i].center.y == 0.0f) && (abs(boxes2[i].center.y) < max_rel_diff)))
|
||||
{
|
||||
rel_diff = abs(boxes1[i].center.y-boxes2[i].center.y)/abs(boxes1[i].center.y);
|
||||
if (rel_diff > max_rel_diff)
|
||||
return i;
|
||||
}
|
||||
if (!((boxes1[i].size.width == 0.0f) && (abs(boxes2[i].size.width) < max_rel_diff)))
|
||||
{
|
||||
rel_diff = abs(boxes1[i].size.width-boxes2[i].size.width)/abs(boxes1[i].size.width);
|
||||
if (rel_diff > max_rel_diff)
|
||||
return i;
|
||||
}
|
||||
|
||||
if (!((boxes1[i].size.height == 0.0f) && (abs(boxes2[i].size.height) < max_rel_diff)))
|
||||
{
|
||||
rel_diff = abs(boxes1[i].size.height-boxes2[i].size.height)/abs(boxes1[i].size.height);
|
||||
if (rel_diff > max_rel_diff)
|
||||
return i;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
void CV_MserTest::run(int)
|
||||
{
|
||||
string image_path = string(ts->get_data_path()) + "mser/puzzle.png";
|
||||
|
||||
IplImage* img = cvLoadImage( image_path.c_str());
|
||||
if (!img)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Unable to open image mser/puzzle.png\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
CvSeq* contours;
|
||||
CvMemStorage* storage= cvCreateMemStorage();
|
||||
IplImage* hsv = cvCreateImage( cvGetSize( img ), IPL_DEPTH_8U, 3 );
|
||||
cvCvtColor( img, hsv, CV_BGR2YCrCb );
|
||||
CvMSERParams params = cvMSERParams();//cvMSERParams( 5, 60, cvRound(.2*img->width*img->height), .25, .2 );
|
||||
cvExtractMSER( hsv, NULL, &contours, storage, params );
|
||||
|
||||
vector<CvBox2D> boxes;
|
||||
vector<CvBox2D> boxes_orig;
|
||||
for ( int i = 0; i < contours->total; i++ )
|
||||
{
|
||||
CvContour* r = *(CvContour**)cvGetSeqElem( contours, i );
|
||||
CvBox2D box = cvFitEllipse2( r );
|
||||
box.angle=(float)CV_PI/2-box.angle;
|
||||
boxes.push_back(box);
|
||||
}
|
||||
|
||||
string boxes_path = string(ts->get_data_path()) + "mser/boxes.txt";
|
||||
|
||||
if (!LoadBoxes(boxes_path.c_str(),boxes_orig))
|
||||
{
|
||||
SaveBoxes(boxes_path.c_str(),boxes);
|
||||
ts->printf( cvtest::TS::LOG, "Unable to open data file mser/boxes.txt\n");
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISSING_TEST_DATA);
|
||||
return;
|
||||
}
|
||||
|
||||
const float dissimularity = 0.01f;
|
||||
int n_box = CompareBoxes(boxes_orig,boxes,dissimularity);
|
||||
if (n_box < 0)
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::OK);
|
||||
}
|
||||
else
|
||||
{
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
||||
ts->printf( cvtest::TS::LOG, "Incorrect correspondence in %d box\n",n_box);
|
||||
}
|
||||
|
||||
cvReleaseMemStorage(&storage);
|
||||
cvReleaseImage(&hsv);
|
||||
cvReleaseImage(&img);
|
||||
}
|
||||
|
||||
TEST(Features2d_MSER, regression) { CV_MserTest test; test.safe_run(); }
|
||||
|
523
modules/features2d/test/test_nearestneighbors.cpp
Normal file
523
modules/features2d/test/test_nearestneighbors.cpp
Normal file
@@ -0,0 +1,523 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::flann;
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
class NearestNeighborTest : public cvtest::BaseTest
|
||||
{
|
||||
public:
|
||||
NearestNeighborTest() {}
|
||||
protected:
|
||||
static const int minValue = 0;
|
||||
static const int maxValue = 1;
|
||||
static const int dims = 30;
|
||||
static const int featuresCount = 2000;
|
||||
static const int K = 1; // * should also test 2nd nn etc.?
|
||||
|
||||
|
||||
virtual void run( int start_from );
|
||||
virtual void createModel( const Mat& data ) = 0;
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) = 0;
|
||||
virtual int checkGetPoins( const Mat& data );
|
||||
virtual int checkFindBoxed();
|
||||
virtual int checkFind( const Mat& data );
|
||||
virtual void releaseModel() = 0;
|
||||
};
|
||||
|
||||
int NearestNeighborTest::checkGetPoins( const Mat& )
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int NearestNeighborTest::checkFindBoxed()
|
||||
{
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int NearestNeighborTest::checkFind( const Mat& data )
|
||||
{
|
||||
int code = cvtest::TS::OK;
|
||||
int pointsCount = 1000;
|
||||
float noise = 0.2f;
|
||||
|
||||
RNG rng;
|
||||
Mat points( pointsCount, dims, CV_32FC1 );
|
||||
Mat results( pointsCount, K, CV_32SC1 );
|
||||
|
||||
std::vector<int> fmap( pointsCount );
|
||||
for( int pi = 0; pi < pointsCount; pi++ )
|
||||
{
|
||||
int fi = rng.next() % featuresCount;
|
||||
fmap[pi] = fi;
|
||||
for( int d = 0; d < dims; d++ )
|
||||
points.at<float>(pi, d) = data.at<float>(fi, d) + rng.uniform(0.0f, 1.0f) * noise;
|
||||
}
|
||||
|
||||
code = findNeighbors( points, results );
|
||||
|
||||
if( code == cvtest::TS::OK )
|
||||
{
|
||||
int correctMatches = 0;
|
||||
for( int pi = 0; pi < pointsCount; pi++ )
|
||||
{
|
||||
if( fmap[pi] == results.at<int>(pi, 0) )
|
||||
correctMatches++;
|
||||
}
|
||||
|
||||
double correctPerc = correctMatches / (double)pointsCount;
|
||||
if (correctPerc < .75)
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "correct_perc = %d\n", correctPerc );
|
||||
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
}
|
||||
}
|
||||
|
||||
return code;
|
||||
}
|
||||
|
||||
void NearestNeighborTest::run( int /*start_from*/ ) {
|
||||
int code = cvtest::TS::OK, tempCode;
|
||||
Mat desc( featuresCount, dims, CV_32FC1 );
|
||||
randu( desc, Scalar(minValue), Scalar(maxValue) );
|
||||
|
||||
createModel( desc );
|
||||
|
||||
tempCode = checkGetPoins( desc );
|
||||
if( tempCode != cvtest::TS::OK )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of GetPoints \n" );
|
||||
code = tempCode;
|
||||
}
|
||||
|
||||
tempCode = checkFindBoxed();
|
||||
if( tempCode != cvtest::TS::OK )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of FindBoxed \n" );
|
||||
code = tempCode;
|
||||
}
|
||||
|
||||
tempCode = checkFind( desc );
|
||||
if( tempCode != cvtest::TS::OK )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of Find \n" );
|
||||
code = tempCode;
|
||||
}
|
||||
|
||||
releaseModel();
|
||||
|
||||
ts->set_failed_test_info( code );
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
class CV_LSHTest : public NearestNeighborTest
|
||||
{
|
||||
public:
|
||||
CV_LSHTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data );
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors );
|
||||
virtual void releaseModel();
|
||||
struct CvLSH* lsh;
|
||||
CvMat desc;
|
||||
};
|
||||
|
||||
void CV_LSHTest::createModel( const Mat& data )
|
||||
{
|
||||
desc = data;
|
||||
lsh = cvCreateMemoryLSH( data.cols, data.rows, 70, 20, CV_32FC1 );
|
||||
cvLSHAdd( lsh, &desc );
|
||||
}
|
||||
|
||||
int CV_LSHTest::findNeighbors( Mat& points, Mat& neighbors )
|
||||
{
|
||||
const int emax = 20;
|
||||
Mat dist( points.rows, neighbors.cols, CV_64FC1);
|
||||
CvMat _dist = dist, _points = points, _neighbors = neighbors;
|
||||
cvLSHQuery( lsh, &_points, &_neighbors, &_dist, neighbors.cols, emax );
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_LSHTest::releaseModel()
|
||||
{
|
||||
cvReleaseLSH( &lsh );
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
class CV_FeatureTreeTest_C : public NearestNeighborTest
|
||||
{
|
||||
public:
|
||||
CV_FeatureTreeTest_C() {}
|
||||
protected:
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors );
|
||||
virtual void releaseModel();
|
||||
CvFeatureTree* tr;
|
||||
CvMat desc;
|
||||
};
|
||||
|
||||
int CV_FeatureTreeTest_C::findNeighbors( Mat& points, Mat& neighbors )
|
||||
{
|
||||
const int emax = 20;
|
||||
Mat dist( points.rows, neighbors.cols, CV_64FC1);
|
||||
CvMat _dist = dist, _points = points, _neighbors = neighbors;
|
||||
cvFindFeatures( tr, &_points, &_neighbors, &_dist, neighbors.cols, emax );
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_FeatureTreeTest_C::releaseModel()
|
||||
{
|
||||
cvReleaseFeatureTree( tr );
|
||||
}
|
||||
|
||||
//--------------------------------------
|
||||
class CV_SpillTreeTest_C : public CV_FeatureTreeTest_C
|
||||
{
|
||||
public:
|
||||
CV_SpillTreeTest_C() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data );
|
||||
};
|
||||
|
||||
void CV_SpillTreeTest_C::createModel( const Mat& data )
|
||||
{
|
||||
desc = data;
|
||||
tr = cvCreateSpillTree( &desc );
|
||||
}
|
||||
|
||||
//--------------------------------------
|
||||
class CV_KDTreeTest_C : public CV_FeatureTreeTest_C
|
||||
{
|
||||
public:
|
||||
CV_KDTreeTest_C() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data );
|
||||
virtual int checkFindBoxed();
|
||||
};
|
||||
|
||||
void CV_KDTreeTest_C::createModel( const Mat& data )
|
||||
{
|
||||
desc = data;
|
||||
tr = cvCreateKDTree( &desc );
|
||||
}
|
||||
|
||||
int CV_KDTreeTest_C::checkFindBoxed()
|
||||
{
|
||||
Mat min(1, dims, CV_32FC1 ), max(1, dims, CV_32FC1 ), indices( 1, 1, CV_32SC1 );
|
||||
float l = minValue, r = maxValue;
|
||||
min.setTo(Scalar(l)), max.setTo(Scalar(r));
|
||||
CvMat _min = min, _max = max, _indices = indices;
|
||||
// TODO check indices
|
||||
if( cvFindFeaturesBoxed( tr, &_min, &_max, &_indices ) != featuresCount )
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
class CV_KDTreeTest_CPP : public NearestNeighborTest
|
||||
{
|
||||
public:
|
||||
CV_KDTreeTest_CPP() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data );
|
||||
virtual int checkGetPoins( const Mat& data );
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors );
|
||||
virtual int checkFindBoxed();
|
||||
virtual void releaseModel();
|
||||
KDTree* tr;
|
||||
};
|
||||
|
||||
|
||||
void CV_KDTreeTest_CPP::createModel( const Mat& data )
|
||||
{
|
||||
tr = new KDTree( data, false );
|
||||
}
|
||||
|
||||
int CV_KDTreeTest_CPP::checkGetPoins( const Mat& data )
|
||||
{
|
||||
Mat res1( data.size(), data.type() ),
|
||||
res2( data.size(), data.type() ),
|
||||
res3( data.size(), data.type() );
|
||||
Mat idxs( 1, data.rows, CV_32SC1 );
|
||||
for( int pi = 0; pi < data.rows; pi++ )
|
||||
{
|
||||
idxs.at<int>(0, pi) = pi;
|
||||
// 1st way
|
||||
const float* point = tr->getPoint(pi);
|
||||
for( int di = 0; di < data.cols; di++ )
|
||||
res1.at<float>(pi, di) = point[di];
|
||||
}
|
||||
// 2nd way
|
||||
tr->getPoints( idxs.ptr<int>(0), data.rows, res2 );
|
||||
|
||||
// 3d way
|
||||
tr->getPoints( idxs, res3 );
|
||||
|
||||
if( norm( res1, data, NORM_L1) != 0 ||
|
||||
norm( res2, data, NORM_L1) != 0 ||
|
||||
norm( res3, data, NORM_L1) != 0)
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int CV_KDTreeTest_CPP::checkFindBoxed()
|
||||
{
|
||||
vector<float> min( dims, minValue), max(dims, maxValue);
|
||||
vector<int> indices;
|
||||
tr->findOrthoRange( &min[0], &max[0], &indices );
|
||||
// TODO check indices
|
||||
if( (int)indices.size() != featuresCount)
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int CV_KDTreeTest_CPP::findNeighbors( Mat& points, Mat& neighbors )
|
||||
{
|
||||
const int emax = 20;
|
||||
Mat neighbors2( neighbors.size(), CV_32SC1 );
|
||||
int j;
|
||||
vector<float> min(points.cols, minValue);
|
||||
vector<float> max(points.cols, maxValue);
|
||||
for( int pi = 0; pi < points.rows; pi++ )
|
||||
{
|
||||
// 1st way
|
||||
tr->findNearest( points.ptr<float>(pi), neighbors.cols, emax, neighbors.ptr<int>(pi) );
|
||||
|
||||
// 2nd way
|
||||
vector<int> neighborsIdx2( neighbors2.cols, 0 );
|
||||
tr->findNearest( points.ptr<float>(pi), neighbors2.cols, emax, &neighborsIdx2 );
|
||||
vector<int>::const_iterator it2 = neighborsIdx2.begin();
|
||||
for( j = 0; it2 != neighborsIdx2.end(); ++it2, j++ )
|
||||
neighbors2.at<int>(pi,j) = *it2;
|
||||
}
|
||||
|
||||
// compare results
|
||||
if( norm( neighbors, neighbors2, NORM_L1 ) != 0 )
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_KDTreeTest_CPP::releaseModel()
|
||||
{
|
||||
delete tr;
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------------
|
||||
class CV_FlannTest : public NearestNeighborTest
|
||||
{
|
||||
public:
|
||||
CV_FlannTest() {}
|
||||
protected:
|
||||
void createIndex( const Mat& data, const IndexParams& params );
|
||||
int knnSearch( Mat& points, Mat& neighbors );
|
||||
int radiusSearch( Mat& points, Mat& neighbors );
|
||||
virtual void releaseModel();
|
||||
Index* index;
|
||||
};
|
||||
|
||||
void CV_FlannTest::createIndex( const Mat& data, const IndexParams& params )
|
||||
{
|
||||
index = new Index( data, params );
|
||||
}
|
||||
|
||||
int CV_FlannTest::knnSearch( Mat& points, Mat& neighbors )
|
||||
{
|
||||
Mat dist( points.rows, neighbors.cols, CV_32FC1);
|
||||
int knn = 1, j;
|
||||
|
||||
// 1st way
|
||||
index->knnSearch( points, neighbors, dist, knn, SearchParams() );
|
||||
|
||||
// 2nd way
|
||||
Mat neighbors1( neighbors.size(), CV_32SC1 );
|
||||
for( int i = 0; i < points.rows; i++ )
|
||||
{
|
||||
float* fltPtr = points.ptr<float>(i);
|
||||
vector<float> query( fltPtr, fltPtr + points.cols );
|
||||
vector<int> indices( neighbors1.cols, 0 );
|
||||
vector<float> dists( dist.cols, 0 );
|
||||
index->knnSearch( query, indices, dists, knn, SearchParams() );
|
||||
vector<int>::const_iterator it = indices.begin();
|
||||
for( j = 0; it != indices.end(); ++it, j++ )
|
||||
neighbors1.at<int>(i,j) = *it;
|
||||
}
|
||||
|
||||
// compare results
|
||||
if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
int CV_FlannTest::radiusSearch( Mat& points, Mat& neighbors )
|
||||
{
|
||||
Mat dist( 1, neighbors.cols, CV_32FC1);
|
||||
Mat neighbors1( neighbors.size(), CV_32SC1 );
|
||||
float radius = 10.0f;
|
||||
int j;
|
||||
|
||||
// radiusSearch can only search one feature at a time for range search
|
||||
for( int i = 0; i < points.rows; i++ )
|
||||
{
|
||||
// 1st way
|
||||
Mat p( 1, points.cols, CV_32FC1, points.ptr<float>(i) ),
|
||||
n( 1, neighbors.cols, CV_32SC1, neighbors.ptr<int>(i) );
|
||||
index->radiusSearch( p, n, dist, radius, SearchParams() );
|
||||
|
||||
// 2nd way
|
||||
float* fltPtr = points.ptr<float>(i);
|
||||
vector<float> query( fltPtr, fltPtr + points.cols );
|
||||
vector<int> indices( neighbors1.cols, 0 );
|
||||
vector<float> dists( dist.cols, 0 );
|
||||
index->radiusSearch( query, indices, dists, radius, SearchParams() );
|
||||
vector<int>::const_iterator it = indices.begin();
|
||||
for( j = 0; it != indices.end(); ++it, j++ )
|
||||
neighbors1.at<int>(i,j) = *it;
|
||||
}
|
||||
// compare results
|
||||
if( norm( neighbors, neighbors1, NORM_L1 ) != 0 )
|
||||
return cvtest::TS::FAIL_BAD_ACCURACY;
|
||||
|
||||
return cvtest::TS::OK;
|
||||
}
|
||||
|
||||
void CV_FlannTest::releaseModel()
|
||||
{
|
||||
delete index;
|
||||
}
|
||||
|
||||
//---------------------------------------
|
||||
class CV_FlannLinearIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannLinearIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data ) { createIndex( data, LinearIndexParams() ); }
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
|
||||
};
|
||||
|
||||
//---------------------------------------
|
||||
class CV_FlannKMeansIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannKMeansIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data ) { createIndex( data, KMeansIndexParams() ); }
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
|
||||
};
|
||||
|
||||
//---------------------------------------
|
||||
class CV_FlannKDTreeIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannKDTreeIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data ) { createIndex( data, KDTreeIndexParams() ); }
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return radiusSearch( points, neighbors ); }
|
||||
};
|
||||
|
||||
//----------------------------------------
|
||||
class CV_FlannCompositeIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannCompositeIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data ) { createIndex( data, CompositeIndexParams() ); }
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
|
||||
};
|
||||
|
||||
//----------------------------------------
|
||||
class CV_FlannAutotunedIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannAutotunedIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data ) { createIndex( data, AutotunedIndexParams() ); }
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
|
||||
};
|
||||
//----------------------------------------
|
||||
class CV_FlannSavedIndexTest : public CV_FlannTest
|
||||
{
|
||||
public:
|
||||
CV_FlannSavedIndexTest() {}
|
||||
protected:
|
||||
virtual void createModel( const Mat& data );
|
||||
virtual int findNeighbors( Mat& points, Mat& neighbors ) { return knnSearch( points, neighbors ); }
|
||||
};
|
||||
|
||||
void CV_FlannSavedIndexTest::createModel(const cv::Mat &data)
|
||||
{
|
||||
switch ( cvtest::randInt(ts->get_rng()) % 2 )
|
||||
{
|
||||
//case 0: createIndex( data, LinearIndexParams() ); break; // nothing to save for linear search
|
||||
case 0: createIndex( data, KMeansIndexParams() ); break;
|
||||
case 1: createIndex( data, KDTreeIndexParams() ); break;
|
||||
//case 2: createIndex( data, CompositeIndexParams() ); break; // nothing to save for linear search
|
||||
//case 2: createIndex( data, AutotunedIndexParams() ); break; // possible linear index !
|
||||
default: assert(0);
|
||||
}
|
||||
char filename[50];
|
||||
tmpnam( filename );
|
||||
if(filename[0] == '\\') filename[0] = '_';
|
||||
index->save( filename );
|
||||
|
||||
createIndex( data, SavedIndexParams(filename));
|
||||
remove( filename );
|
||||
}
|
||||
|
||||
TEST(Features2d_LSH, regression) { CV_LSHTest test; test.safe_run(); }
|
||||
TEST(Features2d_SpillTree, regression) { CV_SpillTreeTest_C test; test.safe_run(); }
|
||||
TEST(Features2d_KDTree_C, regression) { CV_KDTreeTest_C test; test.safe_run(); }
|
||||
TEST(Features2d_KDTree_CPP, regression) { CV_KDTreeTest_CPP test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_Linear, regression) { CV_FlannLinearIndexTest test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_KMeans, regression) { CV_FlannKMeansIndexTest test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_KDTree, regression) { CV_FlannKDTreeIndexTest test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_Composite, regression) { CV_FlannCompositeIndexTest test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_Auto, regression) { CV_FlannAutotunedIndexTest test; test.safe_run(); }
|
||||
TEST(Features2d_FLANN_Saved, regression) { CV_FlannSavedIndexTest test; test.safe_run(); }
|
1
modules/features2d/test/test_precomp.cpp
Normal file
1
modules/features2d/test/test_precomp.cpp
Normal file
@@ -0,0 +1 @@
|
||||
#include "test_precomp.hpp"
|
11
modules/features2d/test/test_precomp.hpp
Normal file
11
modules/features2d/test/test_precomp.hpp
Normal file
@@ -0,0 +1,11 @@
|
||||
#ifndef __OPENCV_TEST_PRECOMP_HPP__
|
||||
#define __OPENCV_TEST_PRECOMP_HPP__
|
||||
|
||||
#include "opencv2/ts/ts.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/imgproc/imgproc_c.h"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include <iostream>
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user