Added FisheyeTest
This commit is contained in:
parent
35e1b322cb
commit
05ee15f108
@ -2,138 +2,49 @@
|
||||
#include<fstream>
|
||||
#include <opencv2/ts/gpu_test.hpp>
|
||||
|
||||
#define DEF_PARAM_TEST(name, ...) typedef ::perf::TestBaseWithParam< std::tr1::tuple< __VA_ARGS__ > > name
|
||||
#define PARAM_TEST_CASE(name, ...) struct name : testing::TestWithParam< std::tr1::tuple< __VA_ARGS__ > >
|
||||
class FisheyeTest : public ::testing::Test {
|
||||
|
||||
/// Change this parameter via CMake: cmake -DDATASETS_REPOSITORY_FOLDER=<path>
|
||||
//const static std::string datasets_repository_path = "DATASETS_REPOSITORY_FOLDER";
|
||||
const static std::string datasets_repository_path = "/home/krylov/data";
|
||||
protected:
|
||||
const static cv::Size imageSize;
|
||||
const static cv::Matx33d K;
|
||||
const static cv::Vec4d D;
|
||||
const static cv::Matx33d R;
|
||||
const static cv::Vec3d T;
|
||||
std::string datasets_repository_path;
|
||||
|
||||
namespace FishEye
|
||||
{
|
||||
const static cv::Size imageSize(1280, 800);
|
||||
|
||||
const static cv::Matx33d K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
const static cv::Vec4d D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
const static cv::Matx33d R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
||||
|
||||
const static cv::Vec3d T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
||||
}
|
||||
|
||||
namespace{
|
||||
std::string combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
std::string combine_format(const std::string& item1, const std::string& item2, ...)
|
||||
{
|
||||
std::string fmt = combine(item1, item2);
|
||||
char buffer[1 << 16];
|
||||
va_list args;
|
||||
va_start( args, item2 );
|
||||
vsprintf( buffer, fmt.c_str(), args );
|
||||
va_end( args );
|
||||
return std::string(buffer);
|
||||
}
|
||||
|
||||
void readPoins(std::vector<std::vector<cv::Point3d> >& objectPoints,
|
||||
std::vector<std::vector<cv::Point2d> >& imagePoints,
|
||||
const std::string& path, const int n_images, const int n_points)
|
||||
{
|
||||
objectPoints.resize(n_images);
|
||||
imagePoints.resize(n_images);
|
||||
|
||||
std::vector<cv::Point2d> image(n_points);
|
||||
std::vector<cv::Point3d> object(n_points);
|
||||
|
||||
std::ifstream ipStream;
|
||||
std::ifstream opStream;
|
||||
|
||||
for (int image_idx = 0; image_idx < n_images; image_idx++)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << image_idx;
|
||||
std::string idxStr = ss.str();
|
||||
|
||||
ipStream.open(combine(path, std::string(std::string("x_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in);
|
||||
opStream.open(combine(path, std::string(std::string("X_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in);
|
||||
CV_Assert(ipStream.is_open() && opStream.is_open());
|
||||
|
||||
for (int point_idx = 0; point_idx < n_points; point_idx++)
|
||||
{
|
||||
double x, y, z;
|
||||
char delim;
|
||||
ipStream >> x >> delim >> y;
|
||||
image[point_idx] = cv::Point2d(x, y);
|
||||
opStream >> x >> delim >> y >> delim >> z;
|
||||
object[point_idx] = cv::Point3d(x, y, z);
|
||||
}
|
||||
ipStream.close();
|
||||
opStream.close();
|
||||
|
||||
imagePoints[image_idx] = image;
|
||||
objectPoints[image_idx] = object;
|
||||
virtual void SetUp() {
|
||||
datasets_repository_path = combine(cvtest::TS::ptr()->get_data_path(), "cameracalibration/fisheye");
|
||||
}
|
||||
}
|
||||
|
||||
void readExtrinsics(const std::string& file, cv::OutputArray _R, cv::OutputArray _T, cv::OutputArray _R1, cv::OutputArray _R2,
|
||||
cv::OutputArray _P1, cv::OutputArray _P2, cv::OutputArray _Q)
|
||||
protected:
|
||||
std::string combine(const std::string& _item1, const std::string& _item2);
|
||||
|
||||
std::string combine_format(const std::string& item1, const std::string& item2, ...);
|
||||
|
||||
void readPoins(std::vector<std::vector<cv::Point3d> >& objectPoints,
|
||||
std::vector<std::vector<cv::Point2d> >& imagePoints,
|
||||
const std::string& path, const int n_images, const int n_points);
|
||||
|
||||
void readExtrinsics(const std::string& file, cv::OutputArray _R, cv::OutputArray _T, cv::OutputArray _R1, cv::OutputArray _R2,
|
||||
cv::OutputArray _P1, cv::OutputArray _P2, cv::OutputArray _Q);
|
||||
|
||||
cv::Mat mergeRectification(const cv::Mat& l, const cv::Mat& r);
|
||||
};
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// TESTS::
|
||||
|
||||
TEST_F(FisheyeTest, projectPoints)
|
||||
{
|
||||
cv::FileStorage fs(file, cv::FileStorage::READ);
|
||||
CV_Assert(fs.isOpened());
|
||||
|
||||
cv::Mat R, T, R1, R2, P1, P2, Q;
|
||||
fs["R"] >> R; fs["T"] >> T; fs["R1"] >> R1; fs["R2"] >> R2; fs["P1"] >> P1; fs["P2"] >> P2; fs["Q"] >> Q;
|
||||
if (_R.needed()) R.copyTo(_R); if(_T.needed()) T.copyTo(_T); if (_R1.needed()) R1.copyTo(_R1); if (_R2.needed()) R2.copyTo(_R2);
|
||||
if(_P1.needed()) P1.copyTo(_P1); if(_P2.needed()) P2.copyTo(_P2); if(_Q.needed()) Q.copyTo(_Q);
|
||||
}
|
||||
|
||||
cv::Mat mergeRectification(const cv::Mat& l, const cv::Mat& r)
|
||||
{
|
||||
CV_Assert(l.type() == r.type() && l.size() == r.size());
|
||||
cv::Mat merged(l.rows, l.cols * 2, l.type());
|
||||
cv::Mat lpart = merged.colRange(0, l.cols);
|
||||
cv::Mat rpart = merged.colRange(l.cols, merged.cols);
|
||||
l.copyTo(lpart);
|
||||
r.copyTo(rpart);
|
||||
|
||||
for(int i = 0; i < l.rows; i+=20)
|
||||
cv::line(merged, cv::Point(0, i), cv::Point(merged.cols, i), CV_RGB(0, 255, 0));
|
||||
|
||||
return merged;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, projectPoints)
|
||||
{
|
||||
double cols = FishEye::imageSize.width,
|
||||
rows = FishEye::imageSize.height;
|
||||
double cols = this->imageSize.width,
|
||||
rows = this->imageSize.height;
|
||||
|
||||
const int N = 20;
|
||||
cv::Mat distorted0(1, N*N, CV_64FC2), undist1, undist2, distorted1, distorted2;
|
||||
undist2.create(distorted0.size(), CV_MAKETYPE(distorted0.depth(), 3));
|
||||
cv::Vec2d* pts = distorted0.ptr<cv::Vec2d>();
|
||||
|
||||
cv::Vec2d c(FishEye::K(0, 2), FishEye::K(1, 2));
|
||||
cv::Vec2d c(this->K(0, 2), this->K(1, 2));
|
||||
for(int y = 0, k = 0; y < N; ++y)
|
||||
for(int x = 0; x < N; ++x)
|
||||
{
|
||||
@ -141,29 +52,27 @@ TEST(FisheyeTest, projectPoints)
|
||||
pts[k++] = (point - c) * 0.85 + c;
|
||||
}
|
||||
|
||||
cv::Fisheye::undistortPoints(distorted0, undist1, FishEye::K, FishEye::D);
|
||||
cv::Fisheye::undistortPoints(distorted0, undist1, this->K, this->D);
|
||||
|
||||
cv::Vec2d* u1 = undist1.ptr<cv::Vec2d>();
|
||||
cv::Vec3d* u2 = undist2.ptr<cv::Vec3d>();
|
||||
for(int i = 0; i < (int)distorted0.total(); ++i)
|
||||
u2[i] = cv::Vec3d(u1[i][0], u1[i][1], 1.0);
|
||||
|
||||
cv::Fisheye::distortPoints(undist1, distorted1, FishEye::K, FishEye::D);
|
||||
cv::Fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), FishEye::K, FishEye::D);
|
||||
cv::Fisheye::distortPoints(undist1, distorted1, this->K, this->D);
|
||||
cv::Fisheye::projectPoints(undist2, distorted2, cv::Vec3d::all(0), cv::Vec3d::all(0), this->K, this->D);
|
||||
|
||||
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-5);
|
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-5);
|
||||
EXPECT_MAT_NEAR(distorted0, distorted1, 1e-10);
|
||||
EXPECT_MAT_NEAR(distorted0, distorted2, 1e-10);
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, undistortImage)
|
||||
TEST_F(FisheyeTest, undistortImage)
|
||||
{
|
||||
cv::Matx33d K = FishEye::K;
|
||||
cv::Mat D = cv::Mat(FishEye::D);
|
||||
cv::Matx33d K = this->K;
|
||||
cv::Mat D = cv::Mat(this->D);
|
||||
std::string file = combine(datasets_repository_path, "image000001.png");
|
||||
|
||||
cv::Matx33d newK = K;
|
||||
cv::Mat distorted = cv::imread(file), undistorted;
|
||||
|
||||
{
|
||||
newK(0, 0) = 100;
|
||||
newK(1, 1) = 100;
|
||||
@ -172,7 +81,7 @@ TEST(FisheyeTest, undistortImage)
|
||||
if (correct.empty())
|
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/new_f_100.png"), undistorted));
|
||||
else
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15);
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
{
|
||||
double balance = 1.0;
|
||||
@ -182,7 +91,7 @@ TEST(FisheyeTest, undistortImage)
|
||||
if (correct.empty())
|
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_1.0.png"), undistorted));
|
||||
else
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15);
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
|
||||
{
|
||||
@ -193,13 +102,13 @@ TEST(FisheyeTest, undistortImage)
|
||||
if (correct.empty())
|
||||
CV_Assert(cv::imwrite(combine(datasets_repository_path, "test_undistortImage/balance_0.0.png"), undistorted));
|
||||
else
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-15);
|
||||
EXPECT_MAT_NEAR(correct, undistorted, 1e-10);
|
||||
}
|
||||
|
||||
cv::waitKey();
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, jacobians)
|
||||
TEST_F(FisheyeTest, jacobians)
|
||||
{
|
||||
int n = 10;
|
||||
cv::Mat X(1, n, CV_64FC3);
|
||||
@ -245,7 +154,7 @@ TEST(FisheyeTest, jacobians)
|
||||
cv::Mat T2 = T + dT;
|
||||
cv::Fisheye::projectPoints(X, x2, om, T2, K, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(11,14) * dT).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on om:
|
||||
cv::Mat dom(3, 1, CV_64FC1);
|
||||
@ -254,7 +163,7 @@ TEST(FisheyeTest, jacobians)
|
||||
cv::Mat om2 = om + dom;
|
||||
cv::Fisheye::projectPoints(X, x2, om2, T, K, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(8,11) * dom).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on f:
|
||||
cv::Mat df(2, 1, CV_64FC1);
|
||||
@ -263,7 +172,7 @@ TEST(FisheyeTest, jacobians)
|
||||
cv::Matx33d K2 = K + cv::Matx33d(df.at<double>(0), df.at<double>(0) * alpha, 0, 0, df.at<double>(1), 0, 0, 0, 0);
|
||||
cv::Fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(0,2) * df).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on c:
|
||||
cv::Mat dc(2, 1, CV_64FC1);
|
||||
@ -272,7 +181,7 @@ TEST(FisheyeTest, jacobians)
|
||||
K2 = K + cv::Matx33d(0, 0, dc.at<double>(0), 0, 0, dc.at<double>(1), 0, 0, 0);
|
||||
cv::Fisheye::projectPoints(X, x2, om, T, K2, k, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(2,4) * dc).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on k:
|
||||
cv::Mat dk(4, 1, CV_64FC1);
|
||||
@ -281,7 +190,7 @@ TEST(FisheyeTest, jacobians)
|
||||
cv::Mat k2 = k + dk;
|
||||
cv::Fisheye::projectPoints(X, x2, om, T, K, k2, alpha, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.colRange(4,8) * dk).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
|
||||
//test on alpha:
|
||||
cv::Mat dalpha(1, 1, CV_64FC1);
|
||||
@ -291,10 +200,10 @@ TEST(FisheyeTest, jacobians)
|
||||
K2 = K + cv::Matx33d(0, f.at<double>(0) * dalpha.at<double>(0), 0, 0, 0, 0, 0, 0, 0);
|
||||
cv::Fisheye::projectPoints(X, x2, om, T, K, k, alpha2, cv::noArray());
|
||||
xpred = x1 + cv::Mat(jacobians.col(14) * dalpha).reshape(2, 1);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-12);
|
||||
CV_Assert (cv::norm(x2 - xpred) < 1e-10);
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, Calibration)
|
||||
TEST_F(FisheyeTest, Calibration)
|
||||
{
|
||||
const int n_images = 34;
|
||||
const int n_points = 48;
|
||||
@ -316,11 +225,11 @@ TEST(FisheyeTest, Calibration)
|
||||
cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D,
|
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
||||
|
||||
EXPECT_MAT_NEAR(K, FishEye::K, 1e-11);
|
||||
EXPECT_MAT_NEAR(D, FishEye::D, 1e-12);
|
||||
EXPECT_MAT_NEAR(K, this->K, 1e-10);
|
||||
EXPECT_MAT_NEAR(D, this->D, 1e-10);
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, Homography)
|
||||
TEST_F(FisheyeTest, Homography)
|
||||
{
|
||||
const int n_images = 1;
|
||||
const int n_points = 48;
|
||||
@ -368,10 +277,10 @@ TEST(FisheyeTest, Homography)
|
||||
std_err *= sqrt((double)merr.reshape(2).total() / (merr.reshape(2).total() - 1));
|
||||
|
||||
cv::Vec2d correct_std_err(0.00516740156010384, 0.00644205331553901);
|
||||
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-16);
|
||||
EXPECT_MAT_NEAR(std_err, correct_std_err, 1e-12);
|
||||
}
|
||||
|
||||
TEST(TestFisheye, EtimateUncertainties)
|
||||
TEST_F(FisheyeTest, EtimateUncertainties)
|
||||
{
|
||||
const int n_images = 34;
|
||||
const int n_points = 48;
|
||||
@ -393,7 +302,7 @@ TEST(TestFisheye, EtimateUncertainties)
|
||||
std::vector<cv::Vec3d> tvec;
|
||||
|
||||
cv::Fisheye::calibrate(objectPoints, imagePoints, imageSize, K, D,
|
||||
cv::noArray(), cv::noArray(), flag, cv::TermCriteria(3, 20, 1e-6));
|
||||
rvec, tvec, flag, cv::TermCriteria(3, 20, 1e-6));
|
||||
|
||||
cv::internal::IntrinsicParams param, errors;
|
||||
cv::Vec2d err_std;
|
||||
@ -410,24 +319,24 @@ TEST(TestFisheye, EtimateUncertainties)
|
||||
cv::internal::EstimateUncertainties(objectPoints, imagePoints, param, rvec, tvec,
|
||||
errors, err_std, thresh_cond, check_cond, rms);
|
||||
|
||||
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-14);
|
||||
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-15);
|
||||
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-15);
|
||||
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-15);
|
||||
CV_Assert(abs(rms - 0.263782587133546) < 1e-15);
|
||||
EXPECT_MAT_NEAR(errors.f, cv::Vec2d(1.29837104202046, 1.31565641071524), 1e-10);
|
||||
EXPECT_MAT_NEAR(errors.c, cv::Vec2d(0.890439368129246, 0.816096854937896), 1e-10);
|
||||
EXPECT_MAT_NEAR(errors.k, cv::Vec4d(0.00516248605191506, 0.0168181467500934, 0.0213118690274604, 0.00916010877545648), 1e-10);
|
||||
EXPECT_MAT_NEAR(err_std, cv::Vec2d(0.187475975266883, 0.185678953263995), 1e-10);
|
||||
CV_Assert(abs(rms - 0.263782587133546) < 1e-10);
|
||||
CV_Assert(errors.alpha == 0);
|
||||
}
|
||||
|
||||
TEST(FisheyeTest, rectify)
|
||||
TEST_F(FisheyeTest, rectify)
|
||||
{
|
||||
const std::string folder =combine(datasets_repository_path, "calib-3_stereo_from_JY");
|
||||
|
||||
cv::Size calibration_size = FishEye::imageSize, requested_size = calibration_size;
|
||||
cv::Matx33d K1 = FishEye::K, K2 = K1;
|
||||
cv::Mat D1 = cv::Mat(FishEye::D), D2 = D1;
|
||||
cv::Size calibration_size = this->imageSize, requested_size = calibration_size;
|
||||
cv::Matx33d K1 = this->K, K2 = K1;
|
||||
cv::Mat D1 = cv::Mat(this->D), D2 = D1;
|
||||
|
||||
cv::Vec3d T = FishEye::T;
|
||||
cv::Matx33d R = FishEye::R;
|
||||
cv::Vec3d T = this->T;
|
||||
cv::Matx33d R = this->R;
|
||||
|
||||
double balance = 0.0, fov_scale = 1.1;
|
||||
cv::Mat R1, R2, P1, P2, Q;
|
||||
@ -462,11 +371,119 @@ TEST(FisheyeTest, rectify)
|
||||
if (correct.empty())
|
||||
cv::imwrite(combine_format(folder, "test_rectify/rectification_AB_%03d.png", i), rectification);
|
||||
else
|
||||
EXPECT_MAT_NEAR(correct, rectification, 1e-15);
|
||||
EXPECT_MAT_NEAR(correct, rectification, 1e-10);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
/// FisheyeTest::
|
||||
|
||||
const cv::Size FisheyeTest::imageSize(1280, 800);
|
||||
|
||||
const cv::Matx33d FisheyeTest::K(558.478087865323, 0, 620.458515360843,
|
||||
0, 560.506767351568, 381.939424848348,
|
||||
0, 0, 1);
|
||||
|
||||
const cv::Vec4d FisheyeTest::D(-0.0014613319981768, -0.00329861110580401, 0.00605760088590183, -0.00374209380722371);
|
||||
|
||||
const cv::Matx33d FisheyeTest::R ( 9.9756700084424932e-01, 6.9698277640183867e-02, 1.4929569991321144e-03,
|
||||
-6.9711825162322980e-02, 9.9748249845531767e-01, 1.2997180766418455e-02,
|
||||
-5.8331736398316541e-04,-1.3069635393884985e-02, 9.9991441852366736e-01);
|
||||
|
||||
const cv::Vec3d FisheyeTest::T(-9.9217369356044638e-02, 3.1741831972356663e-03, 1.8551007952921010e-04);
|
||||
|
||||
|
||||
std::string FisheyeTest::combine(const std::string& _item1, const std::string& _item2)
|
||||
{
|
||||
std::string item1 = _item1, item2 = _item2;
|
||||
std::replace(item1.begin(), item1.end(), '\\', '/');
|
||||
std::replace(item2.begin(), item2.end(), '\\', '/');
|
||||
|
||||
if (item1.empty())
|
||||
return item2;
|
||||
|
||||
if (item2.empty())
|
||||
return item1;
|
||||
|
||||
char last = item1[item1.size()-1];
|
||||
return item1 + (last != '/' ? "/" : "") + item2;
|
||||
}
|
||||
|
||||
std::string FisheyeTest::combine_format(const std::string& item1, const std::string& item2, ...)
|
||||
{
|
||||
std::string fmt = combine(item1, item2);
|
||||
char buffer[1 << 16];
|
||||
va_list args;
|
||||
va_start( args, item2 );
|
||||
vsprintf( buffer, fmt.c_str(), args );
|
||||
va_end( args );
|
||||
return std::string(buffer);
|
||||
}
|
||||
|
||||
void FisheyeTest::readPoins(std::vector<std::vector<cv::Point3d> >& objectPoints,
|
||||
std::vector<std::vector<cv::Point2d> >& imagePoints,
|
||||
const std::string& path, const int n_images, const int n_points)
|
||||
{
|
||||
objectPoints.resize(n_images);
|
||||
imagePoints.resize(n_images);
|
||||
|
||||
std::vector<cv::Point2d> image(n_points);
|
||||
std::vector<cv::Point3d> object(n_points);
|
||||
|
||||
std::ifstream ipStream;
|
||||
std::ifstream opStream;
|
||||
|
||||
for (int image_idx = 0; image_idx < n_images; image_idx++)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << image_idx;
|
||||
std::string idxStr = ss.str();
|
||||
|
||||
ipStream.open(combine(path, std::string(std::string("x_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in);
|
||||
opStream.open(combine(path, std::string(std::string("X_") + idxStr + std::string(".csv"))).c_str(), std::ifstream::in);
|
||||
CV_Assert(ipStream.is_open() && opStream.is_open());
|
||||
|
||||
for (int point_idx = 0; point_idx < n_points; point_idx++)
|
||||
{
|
||||
double x, y, z;
|
||||
char delim;
|
||||
ipStream >> x >> delim >> y;
|
||||
image[point_idx] = cv::Point2d(x, y);
|
||||
opStream >> x >> delim >> y >> delim >> z;
|
||||
object[point_idx] = cv::Point3d(x, y, z);
|
||||
}
|
||||
ipStream.close();
|
||||
opStream.close();
|
||||
|
||||
imagePoints[image_idx] = image;
|
||||
objectPoints[image_idx] = object;
|
||||
}
|
||||
}
|
||||
|
||||
void FisheyeTest::readExtrinsics(const std::string& file, cv::OutputArray _R, cv::OutputArray _T, cv::OutputArray _R1, cv::OutputArray _R2,
|
||||
cv::OutputArray _P1, cv::OutputArray _P2, cv::OutputArray _Q)
|
||||
{
|
||||
cv::FileStorage fs(file, cv::FileStorage::READ);
|
||||
CV_Assert(fs.isOpened());
|
||||
|
||||
cv::Mat R, T, R1, R2, P1, P2, Q;
|
||||
fs["R"] >> R; fs["T"] >> T; fs["R1"] >> R1; fs["R2"] >> R2; fs["P1"] >> P1; fs["P2"] >> P2; fs["Q"] >> Q;
|
||||
if (_R.needed()) R.copyTo(_R); if(_T.needed()) T.copyTo(_T); if (_R1.needed()) R1.copyTo(_R1); if (_R2.needed()) R2.copyTo(_R2);
|
||||
if(_P1.needed()) P1.copyTo(_P1); if(_P2.needed()) P2.copyTo(_P2); if(_Q.needed()) Q.copyTo(_Q);
|
||||
}
|
||||
|
||||
cv::Mat FisheyeTest::mergeRectification(const cv::Mat& l, const cv::Mat& r)
|
||||
{
|
||||
CV_Assert(l.type() == r.type() && l.size() == r.size());
|
||||
cv::Mat merged(l.rows, l.cols * 2, l.type());
|
||||
cv::Mat lpart = merged.colRange(0, l.cols);
|
||||
cv::Mat rpart = merged.colRange(l.cols, merged.cols);
|
||||
l.copyTo(lpart);
|
||||
r.copyTo(rpart);
|
||||
|
||||
for(int i = 0; i < l.rows; i+=20)
|
||||
cv::line(merged, cv::Point(0, i), cv::Point(merged.cols, i), CV_RGB(0, 255, 0));
|
||||
|
||||
return merged;
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user