updated retina modules : minor misakes correction & changed pixel format to float instead of double to keep some memory, precision is almost sufficient, check for residual mistakes

This commit is contained in:
Alexandre Benoit 2011-08-21 11:02:42 +00:00
parent 66ee335ca9
commit 05c0cd72d0

View File

@ -80,16 +80,15 @@ namespace cv
enum RETINA_COLORSAMPLINGMETHOD enum RETINA_COLORSAMPLINGMETHOD
{ {
RETINA_COLOR_RANDOM, /// each pixel position is either R, G or B in a random choice RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice
RETINA_COLOR_DIAGONAL,/// color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR...
RETINA_COLOR_BAYER/// standard bayer sampling RETINA_COLOR_BAYER//!< standard bayer sampling
}; };
class RetinaFilter; class RetinaFilter;
/** /**
* @brief a wrapper class which allows the use of the Gipsa/Listic Labs retina model * @class Retina a wrapper class which allows the Gipsa/Listic Labs model to be used.
* @class Retina object is a wrapper class which allows the Gipsa/Listic Labs model to be used.
* This retina model allows spatio-temporal image processing (applied on still images, video sequences). * This retina model allows spatio-temporal image processing (applied on still images, video sequences).
* As a summary, these are the retina model properties: * As a summary, these are the retina model properties:
* => It applies a spectral whithening (mid-frequency details enhancement) * => It applies a spectral whithening (mid-frequency details enhancement)
@ -97,9 +96,19 @@ class RetinaFilter;
* => low frequency luminance to be reduced (luminance range compression) * => low frequency luminance to be reduced (luminance range compression)
* => local logarithmic luminance compression allows details to be enhanced in low light conditions * => local logarithmic luminance compression allows details to be enhanced in low light conditions
* *
* USE : this model can be used basically for spatio-temporal video effects but also for :
* _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges
* _using the getMagno method output matrix : motion analysis also with the previously cited properties
*
* for more information, reer to the following papers : * for more information, reer to the following papers :
* Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 * Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011
* Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891.
*
* The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author :
* _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper:
* ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007
* _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions.
* ====> more informations in the above cited Jeanny Heraults's book.
*/ */
class CV_EXPORTS Retina { class CV_EXPORTS Retina {
@ -107,15 +116,17 @@ public:
/** /**
* Main constructor with most commun use setup : create an instance of color ready retina model * Main constructor with most commun use setup : create an instance of color ready retina model
* @param parametersSaveFile : the filename of the xml file that records the used retina parametes setup
* @param inputSize : the input frame size * @param inputSize : the input frame size
*/ */
Retina(const std::string parametersSaveFile, Size inputSize); Retina(const std::string parametersSaveFile, Size inputSize);
/** /**
* Complete Retina filter constructor which allows all basic structural parameters definition * Complete Retina filter constructor which allows all basic structural parameters definition
* @param inputSize : the input frame size * @param parametersSaveFile : the filename of the xml file that records the used retina parametes setup
* @param inputSize : the input frame size
* @param colorMode : the chosen processing mode : with or without color processing * @param colorMode : the chosen processing mode : with or without color processing
* @param samplingMethod: specifies which kind of color sampling will be used * @param colorSamplingMethod: specifies which kind of color sampling will be used
* @param useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can be used * @param useRetinaLogSampling: activate retina log sampling, if true, the 2 following parameters can be used
* @param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak * @param reductionFactor: only usefull if param useRetinaLogSampling=true, specifies the reduction factor of the output frame (as the center (fovea) is high resolution and corners can be underscaled, then a reduction of the output is allowed without precision leak
* @param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied * @param samplingStrenght: only usefull if param useRetinaLogSampling=true, specifies the strenght of the log scale that is applied
@ -129,6 +140,7 @@ public:
* => if the xml file does not exist, then default setup is applied * => if the xml file does not exist, then default setup is applied
* => warning, Exceptions are thrown if read XML file is not valid * => warning, Exceptions are thrown if read XML file is not valid
* @param retinaParameterFile : the parameters filename * @param retinaParameterFile : the parameters filename
* @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error
*/ */
void setup(std::string retinaParameterFile="", const bool applyDefaultSetupOnFailure=true); void setup(std::string retinaParameterFile="", const bool applyDefaultSetupOnFailure=true);
@ -153,7 +165,7 @@ public:
* @param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model) * @param HcellsSpatialConstant: the spatial constant of the first order low pass filter of the horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, typical value is 5 pixel, this value is also used for local contrast computing when computing the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular channel model)
* @param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 160 and 250 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 230 * @param ganglionCellsSensitivity: the compression strengh of the ganglion cells local adaptation output, set a value between 160 and 250 for best results, a high value increases more the low value sensitivity... and the output saturates faster, recommended value: 230
*/ */
void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const double photoreceptorsLocalAdaptationSensitivity=0.7, const double photoreceptorsTemporalConstant=0.5, const double photoreceptorsSpatialConstant=0.53, const double horizontalCellsGain=0, const double HcellsTemporalConstant=1, const double HcellsSpatialConstant=7, const double ganglionCellsSensitivity=0.7); void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7, const float photoreceptorsTemporalConstant=0.5, const float photoreceptorsSpatialConstant=0.53, const float horizontalCellsGain=0, const float HcellsTemporalConstant=1, const float HcellsSpatialConstant=7, const float ganglionCellsSensitivity=0.7);
/** /**
* set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel * set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel
@ -167,13 +179,11 @@ public:
* @param localAdaptintegration_tau: specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation * @param localAdaptintegration_tau: specifies the temporal constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation
* @param localAdaptintegration_k: specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation * @param localAdaptintegration_k: specifies the spatial constant of the low pas filter involved in the computation of the local "motion mean" for the local adaptation computation
*/ */
void setupIPLMagnoChannel(const bool normaliseOutput = true, const double parasolCells_beta=0, const double parasolCells_tau=0, const double parasolCells_k=7, const double amacrinCellsTemporalCutFrequency=1.2, const double V0CompressionParameter=0.95, const double localAdaptintegration_tau=0, const double localAdaptintegration_k=7); void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0, const float parasolCells_tau=0, const float parasolCells_k=7, const float amacrinCellsTemporalCutFrequency=1.2, const float V0CompressionParameter=0.95, const float localAdaptintegration_tau=0, const float localAdaptintegration_k=7);
/** /**
* method which allows retina to be applied on an input image * method which allows retina to be applied on an input image, after run, encapsulated retina module is ready to deliver its outputs using dedicated acccessors, see getParvo and getMagno methods
* @param * @param inputImage : the input cv::Mat image to be processed, can be gray level or BGR coded in any format (from 8bit to 16bits)
* /// encapsulated retina module is ready to deliver its outputs using dedicated acccessors, see getParvo and getMagno methods
*
*/ */
void run(const Mat &inputImage); void run(const Mat &inputImage);
@ -195,7 +205,7 @@ public:
* @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false) * @param saturateColors: boolean that activates color saturation (if true) or desactivate (if false)
* @param colorSaturationValue: the saturation factor * @param colorSaturationValue: the saturation factor
*/ */
void setColorSaturation(const bool saturateColors=true, const double colorSaturationValue=4.0); void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0);
/** /**
* clear all retina buffers (equivalent to opening the eyes after a long period of eye close ;o) * clear all retina buffers (equivalent to opening the eyes after a long period of eye close ;o)
@ -203,16 +213,15 @@ public:
void clearBuffers(); void clearBuffers();
protected: protected:
//// Parameteres setup members // Parameteres setup members
// parameters file ... saved on instance delete FileStorage _parametersSaveFile; //!< parameters file ... saved on instance delete
FileStorage _parametersSaveFile; std::string _parametersSaveFileName; //!< parameters file name
std::string _parametersSaveFileName;
//// Retina model related modules // Retina model related modules
// buffer that ensure library cross-compatibility std::valarray<float> _inputBuffer; //!< buffer used to convert input cv::Mat to internal retina buffers format (valarrays)
std::valarray<double> _inputBuffer;
// pointer to retina model // pointer to retina model
RetinaFilter* _retinaFilter; RetinaFilter* _retinaFilter; //!< the pointer to the retina module, allocated with instance construction
/** /**
* exports a valarray buffer outing from HVStools objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format * exports a valarray buffer outing from HVStools objects to a cv::Mat in CV_8UC1 (gray level picture) or CV_8UC3 (color) format
@ -222,7 +231,7 @@ protected:
* @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false) * @param colorMode : a flag which mentions if matrix is color (true) or graylevel (false)
* @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions * @param outBuffer : the output matrix which is reallocated to satisfy Retina output buffer dimensions
*/ */
void _convertValarrayBuffer2cvMat(const std::valarray<double> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, Mat &outBuffer); void _convertValarrayBuffer2cvMat(const std::valarray<float> &grayMatrixToConvert, const unsigned int nbRows, const unsigned int nbColumns, const bool colorMode, Mat &outBuffer);
/** /**
* *
@ -230,9 +239,9 @@ protected:
* @param outputValarrayMatrix : the output valarray * @param outputValarrayMatrix : the output valarray
* @return the input image color mode (color=true, gray levels=false) * @return the input image color mode (color=true, gray levels=false)
*/ */
const bool _convertCvMat2ValarrayBuffer(const cv::Mat inputMatToConvert, std::valarray<double> &outputValarrayMatrix); const bool _convertCvMat2ValarrayBuffer(const cv::Mat inputMatToConvert, std::valarray<float> &outputValarrayMatrix);
// private method called by constructirs //! private method called by constructors, gathers their parameters and use them in a unified way
void _init(const std::string parametersSaveFile, Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0); void _init(const std::string parametersSaveFile, Size inputSize, const bool colorMode, RETINA_COLORSAMPLINGMETHOD colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const double reductionFactor=1.0, const double samplingStrenght=10.0);