used new device layer for cv::gpu::minMax
This commit is contained in:
		| @@ -40,208 +40,77 @@ | ||||
| // | ||||
| //M*/ | ||||
|  | ||||
| #if !defined CUDA_DISABLER | ||||
| #include "opencv2/opencv_modules.hpp" | ||||
|  | ||||
| #include "opencv2/core/cuda/common.hpp" | ||||
| #include "opencv2/core/cuda/vec_traits.hpp" | ||||
| #include "opencv2/core/cuda/vec_math.hpp" | ||||
| #include "opencv2/core/cuda/functional.hpp" | ||||
| #include "opencv2/core/cuda/reduce.hpp" | ||||
| #include "opencv2/core/cuda/emulation.hpp" | ||||
| #include "opencv2/core/cuda/limits.hpp" | ||||
| #include "opencv2/core/cuda/utility.hpp" | ||||
| #ifndef HAVE_OPENCV_CUDEV | ||||
|  | ||||
| using namespace cv::cuda; | ||||
| using namespace cv::cuda::device; | ||||
| #error "opencv_cudev is required" | ||||
|  | ||||
| namespace minMax | ||||
| #else | ||||
|  | ||||
| #include "opencv2/cudaarithm.hpp" | ||||
| #include "opencv2/cudev.hpp" | ||||
|  | ||||
| using namespace cv::cudev; | ||||
|  | ||||
| namespace | ||||
| { | ||||
|     __device__ unsigned int blocks_finished = 0; | ||||
|  | ||||
|     // To avoid shared bank conflicts we convert each value into value of | ||||
|     // appropriate type (32 bits minimum) | ||||
|     template <typename T> struct MinMaxTypeTraits; | ||||
|     template <> struct MinMaxTypeTraits<uchar> { typedef int best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<schar> { typedef int best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<ushort> { typedef int best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<short> { typedef int best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<int> { typedef int best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<float> { typedef float best_type; }; | ||||
|     template <> struct MinMaxTypeTraits<double> { typedef double best_type; }; | ||||
|  | ||||
|     template <int BLOCK_SIZE, typename R> | ||||
|     struct GlobalReduce | ||||
|     { | ||||
|         static __device__ void run(R& mymin, R& mymax, R* minval, R* maxval, int tid, int bid, R* sminval, R* smaxval) | ||||
|         { | ||||
|         #if __CUDA_ARCH__ >= 200 | ||||
|             if (tid == 0) | ||||
|             { | ||||
|                 Emulation::glob::atomicMin(minval, mymin); | ||||
|                 Emulation::glob::atomicMax(maxval, mymax); | ||||
|             } | ||||
|         #else | ||||
|             __shared__ bool is_last; | ||||
|  | ||||
|             if (tid == 0) | ||||
|             { | ||||
|                 minval[bid] = mymin; | ||||
|                 maxval[bid] = mymax; | ||||
|  | ||||
|                 __threadfence(); | ||||
|  | ||||
|                 unsigned int ticket = ::atomicAdd(&blocks_finished, 1); | ||||
|                 is_last = (ticket == gridDim.x * gridDim.y - 1); | ||||
|             } | ||||
|  | ||||
|             __syncthreads(); | ||||
|  | ||||
|             if (is_last) | ||||
|             { | ||||
|                 int idx = ::min(tid, gridDim.x * gridDim.y - 1); | ||||
|  | ||||
|                 mymin = minval[idx]; | ||||
|                 mymax = maxval[idx]; | ||||
|  | ||||
|                 const minimum<R> minOp; | ||||
|                 const maximum<R> maxOp; | ||||
|                 device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp)); | ||||
|  | ||||
|                 if (tid == 0) | ||||
|                 { | ||||
|                     minval[0] = mymin; | ||||
|                     maxval[0] = mymax; | ||||
|  | ||||
|                     blocks_finished = 0; | ||||
|                 } | ||||
|             } | ||||
|         #endif | ||||
|         } | ||||
|     }; | ||||
|  | ||||
|     template <int BLOCK_SIZE, typename T, typename R, class Mask> | ||||
|     __global__ void kernel(const PtrStepSz<T> src, const Mask mask, R* minval, R* maxval, const int twidth, const int theight) | ||||
|     { | ||||
|         __shared__ R sminval[BLOCK_SIZE]; | ||||
|         __shared__ R smaxval[BLOCK_SIZE]; | ||||
|  | ||||
|         const int x0 = blockIdx.x * blockDim.x * twidth + threadIdx.x; | ||||
|         const int y0 = blockIdx.y * blockDim.y * theight + threadIdx.y; | ||||
|  | ||||
|         const int tid = threadIdx.y * blockDim.x + threadIdx.x; | ||||
|         const int bid = blockIdx.y * gridDim.x + blockIdx.x; | ||||
|  | ||||
|         R mymin = numeric_limits<R>::max(); | ||||
|         R mymax = -numeric_limits<R>::max(); | ||||
|  | ||||
|         const minimum<R> minOp; | ||||
|         const maximum<R> maxOp; | ||||
|  | ||||
|         for (int i = 0, y = y0; i < theight && y < src.rows; ++i, y += blockDim.y) | ||||
|         { | ||||
|             const T* ptr = src.ptr(y); | ||||
|  | ||||
|             for (int j = 0, x = x0; j < twidth && x < src.cols; ++j, x += blockDim.x) | ||||
|             { | ||||
|                 if (mask(y, x)) | ||||
|                 { | ||||
|                     const R srcVal = ptr[x]; | ||||
|  | ||||
|                     mymin = minOp(mymin, srcVal); | ||||
|                     mymax = maxOp(mymax, srcVal); | ||||
|                 } | ||||
|             } | ||||
|         } | ||||
|  | ||||
|         device::reduce<BLOCK_SIZE>(smem_tuple(sminval, smaxval), thrust::tie(mymin, mymax), tid, thrust::make_tuple(minOp, maxOp)); | ||||
|  | ||||
|         GlobalReduce<BLOCK_SIZE, R>::run(mymin, mymax, minval, maxval, tid, bid, sminval, smaxval); | ||||
|     } | ||||
|  | ||||
|     const int threads_x = 32; | ||||
|     const int threads_y = 8; | ||||
|  | ||||
|     void getLaunchCfg(int cols, int rows, dim3& block, dim3& grid) | ||||
|     { | ||||
|         block = dim3(threads_x, threads_y); | ||||
|  | ||||
|         grid = dim3(divUp(cols, block.x * block.y), | ||||
|                     divUp(rows, block.y * block.x)); | ||||
|  | ||||
|         grid.x = ::min(grid.x, block.x); | ||||
|         grid.y = ::min(grid.y, block.y); | ||||
|     } | ||||
|  | ||||
|     void getBufSize(int cols, int rows, int& bufcols, int& bufrows) | ||||
|     { | ||||
|         dim3 block, grid; | ||||
|         getLaunchCfg(cols, rows, block, grid); | ||||
|  | ||||
|         bufcols = grid.x * grid.y * sizeof(double); | ||||
|         bufrows = 2; | ||||
|     } | ||||
|  | ||||
|     __global__ void setDefaultKernel(int* minval_buf, int* maxval_buf) | ||||
|     { | ||||
|         *minval_buf = numeric_limits<int>::max(); | ||||
|         *maxval_buf = numeric_limits<int>::min(); | ||||
|     } | ||||
|     __global__ void setDefaultKernel(float* minval_buf, float* maxval_buf) | ||||
|     { | ||||
|         *minval_buf = numeric_limits<float>::max(); | ||||
|         *maxval_buf = -numeric_limits<float>::max(); | ||||
|     } | ||||
|     __global__ void setDefaultKernel(double* minval_buf, double* maxval_buf) | ||||
|     { | ||||
|         *minval_buf = numeric_limits<double>::max(); | ||||
|         *maxval_buf = -numeric_limits<double>::max(); | ||||
|     } | ||||
|  | ||||
|     template <typename R> | ||||
|     void setDefault(R* minval_buf, R* maxval_buf) | ||||
|     { | ||||
|         setDefaultKernel<<<1, 1>>>(minval_buf, maxval_buf); | ||||
|     } | ||||
|  | ||||
|     template <typename T> | ||||
|     void run(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf) | ||||
|     void minMaxImpl(const GpuMat& _src, const GpuMat& mask, GpuMat& _buf, double* minVal, double* maxVal) | ||||
|     { | ||||
|         typedef typename MinMaxTypeTraits<T>::best_type R; | ||||
|         typedef typename SelectIf< | ||||
|                 TypesEquals<T, double>::value, | ||||
|                 double, | ||||
|                 typename SelectIf<TypesEquals<T, float>::value, float, int>::type | ||||
|                 >::type work_type; | ||||
|  | ||||
|         dim3 block, grid; | ||||
|         getLaunchCfg(src.cols, src.rows, block, grid); | ||||
|         GpuMat_<T> src(_src); | ||||
|         GpuMat_<work_type> buf(_buf); | ||||
|  | ||||
|         const int twidth = divUp(divUp(src.cols, grid.x), block.x); | ||||
|         const int theight = divUp(divUp(src.rows, grid.y), block.y); | ||||
|  | ||||
|         R* minval_buf = (R*) buf.ptr(0); | ||||
|         R* maxval_buf = (R*) buf.ptr(1); | ||||
|  | ||||
|         setDefault(minval_buf, maxval_buf); | ||||
|  | ||||
|         if (mask.data) | ||||
|             kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, SingleMask(mask), minval_buf, maxval_buf, twidth, theight); | ||||
|         if (mask.empty()) | ||||
|             gridFindMinMaxVal(src, buf); | ||||
|         else | ||||
|             kernel<threads_x * threads_y><<<grid, block>>>((PtrStepSz<T>) src, WithOutMask(), minval_buf, maxval_buf, twidth, theight); | ||||
|             gridFindMinMaxVal(src, buf, globPtr<uchar>(mask)); | ||||
|  | ||||
|         cudaSafeCall( cudaGetLastError() ); | ||||
|         work_type data[2]; | ||||
|         buf.download(cv::Mat(1, 2, buf.type(), data)); | ||||
|  | ||||
|         cudaSafeCall( cudaDeviceSynchronize() ); | ||||
|         if (minVal) | ||||
|             *minVal = data[0]; | ||||
|  | ||||
|         R minval_, maxval_; | ||||
|         cudaSafeCall( cudaMemcpy(&minval_, minval_buf, sizeof(R), cudaMemcpyDeviceToHost) ); | ||||
|         cudaSafeCall( cudaMemcpy(&maxval_, maxval_buf, sizeof(R), cudaMemcpyDeviceToHost) ); | ||||
|         *minval = minval_; | ||||
|         *maxval = maxval_; | ||||
|         if (maxVal) | ||||
|             *maxVal = data[1]; | ||||
|     } | ||||
|  | ||||
|     template void run<uchar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<schar >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<ushort>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<short >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<int   >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<float >(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
|     template void run<double>(const PtrStepSzb src, const PtrStepb mask, double* minval, double* maxval, PtrStepb buf); | ||||
| } | ||||
|  | ||||
| #endif // CUDA_DISABLER | ||||
| void cv::cuda::minMax(InputArray _src, double* minVal, double* maxVal, InputArray _mask, GpuMat& buf) | ||||
| { | ||||
|     typedef void (*func_t)(const GpuMat& _src, const GpuMat& mask, GpuMat& _buf, double* minVal, double* maxVal); | ||||
|     static const func_t funcs[] = | ||||
|     { | ||||
|         minMaxImpl<uchar>, | ||||
|         minMaxImpl<schar>, | ||||
|         minMaxImpl<ushort>, | ||||
|         minMaxImpl<short>, | ||||
|         minMaxImpl<int>, | ||||
|         minMaxImpl<float>, | ||||
|         minMaxImpl<double> | ||||
|     }; | ||||
|  | ||||
|     GpuMat src = _src.getGpuMat(); | ||||
|     GpuMat mask = _mask.getGpuMat(); | ||||
|  | ||||
|     CV_Assert( src.channels() == 1 ); | ||||
|     CV_DbgAssert( mask.empty() || (mask.size() == src.size() && mask.type() == CV_8U) ); | ||||
|  | ||||
|     const int depth = src.depth(); | ||||
|  | ||||
|     const int work_type = depth == CV_64F ? CV_64F : depth == CV_32F ? CV_32F : CV_32S; | ||||
|     ensureSizeIsEnough(1, 2, work_type, buf); | ||||
|  | ||||
|     const func_t func = funcs[src.depth()]; | ||||
|  | ||||
|     func(src, mask, buf, minVal, maxVal); | ||||
| } | ||||
|  | ||||
| #endif | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 Vladislav Vinogradov
					Vladislav Vinogradov