Normalize line endings and whitespace
This commit is contained in:

committed by
Andrey Kamaev

parent
69020da607
commit
04384a71e4
360
samples/python2/letter_recog.py
Normal file → Executable file
360
samples/python2/letter_recog.py
Normal file → Executable file
@@ -1,180 +1,180 @@
|
||||
'''
|
||||
The sample demonstrates how to train Random Trees classifier
|
||||
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||
|
||||
We use the sample database letter-recognition.data
|
||||
from UCI Repository, here is the link:
|
||||
|
||||
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||
UCI Repository of machine learning databases
|
||||
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||
|
||||
The dataset consists of 20000 feature vectors along with the
|
||||
responses - capital latin letters A..Z.
|
||||
The first 10000 samples are used for training
|
||||
and the remaining 10000 - to test the classifier.
|
||||
======================================================
|
||||
USAGE:
|
||||
letter_recog.py [--model <model>]
|
||||
[--data <data fn>]
|
||||
[--load <model fn>] [--save <model fn>]
|
||||
|
||||
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def load_base(fn):
|
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||
samples, responses = a[:,1:], a[:,0]
|
||||
return samples, responses
|
||||
|
||||
class LetterStatModel(object):
|
||||
class_n = 26
|
||||
train_ratio = 0.5
|
||||
|
||||
def load(self, fn):
|
||||
self.model.load(fn)
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
def unroll_samples(self, samples):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
||||
return new_samples
|
||||
|
||||
def unroll_responses(self, responses):
|
||||
sample_n = len(responses)
|
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
||||
new_responses[resp_idx] = 1
|
||||
return new_responses
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.RTrees()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
||||
params = dict(max_depth=10 )
|
||||
self.model.train(samples, cv2.CV_ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
return np.float32( [self.model.predict(s) for s in samples] )
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.KNearest()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.Boost()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
||||
params = dict(max_depth=5) #, use_surrogates=False)
|
||||
self.model.train(new_samples, cv2.CV_ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
|
||||
pred = pred.reshape(-1, self.class_n).argmax(1)
|
||||
return pred
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.SVM()
|
||||
|
||||
def train(self, samples, responses):
|
||||
params = dict( kernel_type = cv2.SVM_LINEAR,
|
||||
svm_type = cv2.SVM_C_SVC,
|
||||
C = 1 )
|
||||
self.model.train(samples, responses, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict_all(samples).ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ANN_MLP()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
self.model.create(layer_sizes)
|
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
bp_dw_scale = 0.001,
|
||||
bp_moment_scale = 0.0 )
|
||||
self.model.train(samples, np.float32(new_responses), None, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import getopt
|
||||
import sys
|
||||
|
||||
print __doc__
|
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||
|
||||
|
||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--data', '../cpp/letter-recognition.data')
|
||||
|
||||
print 'loading data %s ...' % args['--data']
|
||||
samples, responses = load_base(args['--data'])
|
||||
Model = models[args['--model']]
|
||||
model = Model()
|
||||
|
||||
train_n = int(len(samples)*model.train_ratio)
|
||||
if '--load' in args:
|
||||
fn = args['--load']
|
||||
print 'loading model from %s ...' % fn
|
||||
model.load(fn)
|
||||
else:
|
||||
print 'training %s ...' % Model.__name__
|
||||
model.train(samples[:train_n], responses[:train_n])
|
||||
|
||||
print 'testing...'
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
||||
|
||||
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100)
|
||||
|
||||
if '--save' in args:
|
||||
fn = args['--save']
|
||||
print 'saving model to %s ...' % fn
|
||||
model.save(fn)
|
||||
cv2.destroyAllWindows()
|
||||
'''
|
||||
The sample demonstrates how to train Random Trees classifier
|
||||
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||
|
||||
We use the sample database letter-recognition.data
|
||||
from UCI Repository, here is the link:
|
||||
|
||||
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||
UCI Repository of machine learning databases
|
||||
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||
|
||||
The dataset consists of 20000 feature vectors along with the
|
||||
responses - capital latin letters A..Z.
|
||||
The first 10000 samples are used for training
|
||||
and the remaining 10000 - to test the classifier.
|
||||
======================================================
|
||||
USAGE:
|
||||
letter_recog.py [--model <model>]
|
||||
[--data <data fn>]
|
||||
[--load <model fn>] [--save <model fn>]
|
||||
|
||||
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def load_base(fn):
|
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||
samples, responses = a[:,1:], a[:,0]
|
||||
return samples, responses
|
||||
|
||||
class LetterStatModel(object):
|
||||
class_n = 26
|
||||
train_ratio = 0.5
|
||||
|
||||
def load(self, fn):
|
||||
self.model.load(fn)
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
def unroll_samples(self, samples):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
||||
return new_samples
|
||||
|
||||
def unroll_responses(self, responses):
|
||||
sample_n = len(responses)
|
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
||||
new_responses[resp_idx] = 1
|
||||
return new_responses
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.RTrees()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
||||
params = dict(max_depth=10 )
|
||||
self.model.train(samples, cv2.CV_ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
return np.float32( [self.model.predict(s) for s in samples] )
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.KNearest()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.Boost()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], np.uint8)
|
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
||||
params = dict(max_depth=5) #, use_surrogates=False)
|
||||
self.model.train(new_samples, cv2.CV_ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
|
||||
pred = pred.reshape(-1, self.class_n).argmax(1)
|
||||
return pred
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.SVM()
|
||||
|
||||
def train(self, samples, responses):
|
||||
params = dict( kernel_type = cv2.SVM_LINEAR,
|
||||
svm_type = cv2.SVM_C_SVC,
|
||||
C = 1 )
|
||||
self.model.train(samples, responses, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict_all(samples).ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ANN_MLP()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
self.model.create(layer_sizes)
|
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
bp_dw_scale = 0.001,
|
||||
bp_moment_scale = 0.0 )
|
||||
self.model.train(samples, np.float32(new_responses), None, params = params)
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import getopt
|
||||
import sys
|
||||
|
||||
print __doc__
|
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||
|
||||
|
||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--data', '../cpp/letter-recognition.data')
|
||||
|
||||
print 'loading data %s ...' % args['--data']
|
||||
samples, responses = load_base(args['--data'])
|
||||
Model = models[args['--model']]
|
||||
model = Model()
|
||||
|
||||
train_n = int(len(samples)*model.train_ratio)
|
||||
if '--load' in args:
|
||||
fn = args['--load']
|
||||
print 'loading model from %s ...' % fn
|
||||
model.load(fn)
|
||||
else:
|
||||
print 'training %s ...' % Model.__name__
|
||||
model.train(samples[:train_n], responses[:train_n])
|
||||
|
||||
print 'testing...'
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
||||
|
||||
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100)
|
||||
|
||||
if '--save' in args:
|
||||
fn = args['--save']
|
||||
print 'saving model to %s ...' % fn
|
||||
model.save(fn)
|
||||
cv2.destroyAllWindows()
|
||||
|
Reference in New Issue
Block a user