Normalize line endings and whitespace
This commit is contained in:

committed by
Andrey Kamaev

parent
69020da607
commit
04384a71e4
168
samples/python2/digits_video.py
Normal file → Executable file
168
samples/python2/digits_video.py
Normal file → Executable file
@@ -1,84 +1,84 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import sys
|
||||
import video
|
||||
from common import mosaic
|
||||
|
||||
from digits import *
|
||||
|
||||
def main():
|
||||
try: src = sys.argv[1]
|
||||
except: src = 0
|
||||
cap = video.create_capture(src)
|
||||
|
||||
classifier_fn = 'digits_svm.dat'
|
||||
if not os.path.exists(classifier_fn):
|
||||
print '"%s" not found, run digits.py first' % classifier_fn
|
||||
return
|
||||
model = SVM()
|
||||
model.load(classifier_fn)
|
||||
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
|
||||
bin = cv2.medianBlur(bin, 3)
|
||||
contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
try: heirs = heirs[0]
|
||||
except: heirs = []
|
||||
|
||||
for cnt, heir in zip(contours, heirs):
|
||||
_, _, _, outer_i = heir
|
||||
if outer_i >= 0:
|
||||
continue
|
||||
x, y, w, h = cv2.boundingRect(cnt)
|
||||
if not (16 <= h <= 64 and w <= 1.2*h):
|
||||
continue
|
||||
pad = max(h-w, 0)
|
||||
x, w = x-pad/2, w+pad
|
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
|
||||
|
||||
bin_roi = bin[y:,x:][:h,:w]
|
||||
gray_roi = gray[y:,x:][:h,:w]
|
||||
|
||||
m = bin_roi != 0
|
||||
if not 0.1 < m.mean() < 0.4:
|
||||
continue
|
||||
'''
|
||||
v_in, v_out = gray_roi[m], gray_roi[~m]
|
||||
if v_out.std() > 10.0:
|
||||
continue
|
||||
s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std())
|
||||
cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
'''
|
||||
|
||||
s = 1.5*float(h)/SZ
|
||||
m = cv2.moments(bin_roi)
|
||||
c1 = np.float32([m['m10'], m['m01']]) / m['m00']
|
||||
c0 = np.float32([SZ/2, SZ/2])
|
||||
t = c1 - s*c0
|
||||
A = np.zeros((2, 3), np.float32)
|
||||
A[:,:2] = np.eye(2)*s
|
||||
A[:,2] = t
|
||||
bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
bin_norm = deskew(bin_norm)
|
||||
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
|
||||
frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis]
|
||||
|
||||
sample = preprocess_hog([bin_norm])
|
||||
digit = model.predict(sample)[0]
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
|
||||
|
||||
cv2.imshow('frame', frame)
|
||||
cv2.imshow('bin', bin)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
import numpy as np
|
||||
import cv2
|
||||
import os
|
||||
import sys
|
||||
import video
|
||||
from common import mosaic
|
||||
|
||||
from digits import *
|
||||
|
||||
def main():
|
||||
try: src = sys.argv[1]
|
||||
except: src = 0
|
||||
cap = video.create_capture(src)
|
||||
|
||||
classifier_fn = 'digits_svm.dat'
|
||||
if not os.path.exists(classifier_fn):
|
||||
print '"%s" not found, run digits.py first' % classifier_fn
|
||||
return
|
||||
model = SVM()
|
||||
model.load(classifier_fn)
|
||||
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
||||
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
|
||||
bin = cv2.medianBlur(bin, 3)
|
||||
contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
|
||||
try: heirs = heirs[0]
|
||||
except: heirs = []
|
||||
|
||||
for cnt, heir in zip(contours, heirs):
|
||||
_, _, _, outer_i = heir
|
||||
if outer_i >= 0:
|
||||
continue
|
||||
x, y, w, h = cv2.boundingRect(cnt)
|
||||
if not (16 <= h <= 64 and w <= 1.2*h):
|
||||
continue
|
||||
pad = max(h-w, 0)
|
||||
x, w = x-pad/2, w+pad
|
||||
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
|
||||
|
||||
bin_roi = bin[y:,x:][:h,:w]
|
||||
gray_roi = gray[y:,x:][:h,:w]
|
||||
|
||||
m = bin_roi != 0
|
||||
if not 0.1 < m.mean() < 0.4:
|
||||
continue
|
||||
'''
|
||||
v_in, v_out = gray_roi[m], gray_roi[~m]
|
||||
if v_out.std() > 10.0:
|
||||
continue
|
||||
s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std())
|
||||
cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
'''
|
||||
|
||||
s = 1.5*float(h)/SZ
|
||||
m = cv2.moments(bin_roi)
|
||||
c1 = np.float32([m['m10'], m['m01']]) / m['m00']
|
||||
c0 = np.float32([SZ/2, SZ/2])
|
||||
t = c1 - s*c0
|
||||
A = np.zeros((2, 3), np.float32)
|
||||
A[:,:2] = np.eye(2)*s
|
||||
A[:,2] = t
|
||||
bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
bin_norm = deskew(bin_norm)
|
||||
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
|
||||
frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis]
|
||||
|
||||
sample = preprocess_hog([bin_norm])
|
||||
digit = model.predict(sample)[0]
|
||||
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
|
||||
|
||||
|
||||
cv2.imshow('frame', frame)
|
||||
cv2.imshow('bin', bin)
|
||||
ch = cv2.waitKey(1)
|
||||
if ch == 27:
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Reference in New Issue
Block a user