Normalize line endings and whitespace
This commit is contained in:
committed by
Andrey Kamaev
parent
69020da607
commit
04384a71e4
@@ -57,7 +57,7 @@
|
||||
|
||||
namespace cv
|
||||
{
|
||||
|
||||
|
||||
BackgroundSubtractor::~BackgroundSubtractor() {}
|
||||
void BackgroundSubtractor::operator()(InputArray, OutputArray, double)
|
||||
{
|
||||
@@ -73,12 +73,12 @@ static const double defaultBackgroundRatio = 0.7;
|
||||
static const double defaultVarThreshold = 2.5*2.5;
|
||||
static const double defaultNoiseSigma = 30*0.5;
|
||||
static const double defaultInitialWeight = 0.05;
|
||||
|
||||
|
||||
BackgroundSubtractorMOG::BackgroundSubtractorMOG()
|
||||
{
|
||||
frameSize = Size(0,0);
|
||||
frameType = 0;
|
||||
|
||||
|
||||
nframes = 0;
|
||||
nmixtures = defaultNMixtures;
|
||||
history = defaultHistory;
|
||||
@@ -86,14 +86,14 @@ BackgroundSubtractorMOG::BackgroundSubtractorMOG()
|
||||
backgroundRatio = defaultBackgroundRatio;
|
||||
noiseSigma = defaultNoiseSigma;
|
||||
}
|
||||
|
||||
|
||||
BackgroundSubtractorMOG::BackgroundSubtractorMOG(int _history, int _nmixtures,
|
||||
double _backgroundRatio,
|
||||
double _noiseSigma)
|
||||
{
|
||||
frameSize = Size(0,0);
|
||||
frameType = 0;
|
||||
|
||||
|
||||
nframes = 0;
|
||||
nmixtures = min(_nmixtures > 0 ? _nmixtures : defaultNMixtures, 8);
|
||||
history = _history > 0 ? _history : defaultHistory;
|
||||
@@ -101,7 +101,7 @@ BackgroundSubtractorMOG::BackgroundSubtractorMOG(int _history, int _nmixtures,
|
||||
backgroundRatio = min(_backgroundRatio > 0 ? _backgroundRatio : 0.95, 1.);
|
||||
noiseSigma = _noiseSigma <= 0 ? defaultNoiseSigma : _noiseSigma;
|
||||
}
|
||||
|
||||
|
||||
BackgroundSubtractorMOG::~BackgroundSubtractorMOG()
|
||||
{
|
||||
}
|
||||
@@ -112,10 +112,10 @@ void BackgroundSubtractorMOG::initialize(Size _frameSize, int _frameType)
|
||||
frameSize = _frameSize;
|
||||
frameType = _frameType;
|
||||
nframes = 0;
|
||||
|
||||
|
||||
int nchannels = CV_MAT_CN(frameType);
|
||||
CV_Assert( CV_MAT_DEPTH(frameType) == CV_8U );
|
||||
|
||||
|
||||
// for each gaussian mixture of each pixel bg model we store ...
|
||||
// the mixture sort key (w/sum_of_variances), the mixture weight (w),
|
||||
// the mean (nchannels values) and
|
||||
@@ -124,7 +124,7 @@ void BackgroundSubtractorMOG::initialize(Size _frameSize, int _frameType)
|
||||
bgmodel = Scalar::all(0);
|
||||
}
|
||||
|
||||
|
||||
|
||||
template<typename VT> struct MixData
|
||||
{
|
||||
float sortKey;
|
||||
@@ -133,7 +133,7 @@ template<typename VT> struct MixData
|
||||
VT var;
|
||||
};
|
||||
|
||||
|
||||
|
||||
static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
Mat& bgmodel, int nmixtures, double backgroundRatio,
|
||||
double varThreshold, double noiseSigma )
|
||||
@@ -142,17 +142,17 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
|
||||
int K = nmixtures;
|
||||
MixData<float>* mptr = (MixData<float>*)bgmodel.data;
|
||||
|
||||
|
||||
const float w0 = (float)defaultInitialWeight;
|
||||
const float sk0 = (float)(w0/(defaultNoiseSigma*2));
|
||||
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
|
||||
const float minVar = (float)(noiseSigma*noiseSigma);
|
||||
|
||||
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const uchar* src = image.ptr<uchar>(y);
|
||||
uchar* dst = fgmask.ptr<uchar>(y);
|
||||
|
||||
|
||||
if( alpha > 0 )
|
||||
{
|
||||
for( x = 0; x < cols; x++, mptr += K )
|
||||
@@ -160,7 +160,7 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
float wsum = 0;
|
||||
float pix = src[x];
|
||||
int kHit = -1, kForeground = -1;
|
||||
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
float w = mptr[k].weight;
|
||||
@@ -180,19 +180,19 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
var = max(var + alpha*(d2 - var), minVar);
|
||||
mptr[k].var = var;
|
||||
mptr[k].sortKey = w/sqrt(var);
|
||||
|
||||
|
||||
for( k1 = k-1; k1 >= 0; k1-- )
|
||||
{
|
||||
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
|
||||
break;
|
||||
std::swap( mptr[k1], mptr[k1+1] );
|
||||
}
|
||||
|
||||
|
||||
kHit = k1+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
|
||||
{
|
||||
kHit = k = min(k, K-1);
|
||||
@@ -205,7 +205,7 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
else
|
||||
for( ; k < K; k++ )
|
||||
wsum += mptr[k].weight;
|
||||
|
||||
|
||||
float wscale = 1.f/wsum;
|
||||
wsum = 0;
|
||||
for( k = 0; k < K; k++ )
|
||||
@@ -215,7 +215,7 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
if( wsum > T && kForeground < 0 )
|
||||
kForeground = k+1;
|
||||
}
|
||||
|
||||
|
||||
dst[x] = (uchar)(-(kHit >= kForeground));
|
||||
}
|
||||
}
|
||||
@@ -225,7 +225,7 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
{
|
||||
float pix = src[x];
|
||||
int kHit = -1, kForeground = -1;
|
||||
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
if( mptr[k].weight < FLT_EPSILON )
|
||||
@@ -240,7 +240,7 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( kHit >= 0 )
|
||||
{
|
||||
float wsum = 0;
|
||||
@@ -254,14 +254,14 @@ static void process8uC1( const Mat& image, Mat& fgmask, double learningRate,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
Mat& bgmodel, int nmixtures, double backgroundRatio,
|
||||
double varThreshold, double noiseSigma )
|
||||
@@ -269,18 +269,18 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
int x, y, k, k1, rows = image.rows, cols = image.cols;
|
||||
float alpha = (float)learningRate, T = (float)backgroundRatio, vT = (float)varThreshold;
|
||||
int K = nmixtures;
|
||||
|
||||
|
||||
const float w0 = (float)defaultInitialWeight;
|
||||
const float sk0 = (float)(w0/(defaultNoiseSigma*2*sqrt(3.)));
|
||||
const float var0 = (float)(defaultNoiseSigma*defaultNoiseSigma*4);
|
||||
const float minVar = (float)(noiseSigma*noiseSigma);
|
||||
MixData<Vec3f>* mptr = (MixData<Vec3f>*)bgmodel.data;
|
||||
|
||||
|
||||
for( y = 0; y < rows; y++ )
|
||||
{
|
||||
const uchar* src = image.ptr<uchar>(y);
|
||||
uchar* dst = fgmask.ptr<uchar>(y);
|
||||
|
||||
|
||||
if( alpha > 0 )
|
||||
{
|
||||
for( x = 0; x < cols; x++, mptr += K )
|
||||
@@ -288,7 +288,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
float wsum = 0;
|
||||
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
|
||||
int kHit = -1, kForeground = -1;
|
||||
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
float w = mptr[k].weight;
|
||||
@@ -310,19 +310,19 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
max(var[2] + alpha*(diff[2]*diff[2] - var[2]), minVar));
|
||||
mptr[k].var = var;
|
||||
mptr[k].sortKey = w/sqrt(var[0] + var[1] + var[2]);
|
||||
|
||||
|
||||
for( k1 = k-1; k1 >= 0; k1-- )
|
||||
{
|
||||
if( mptr[k1].sortKey >= mptr[k1+1].sortKey )
|
||||
break;
|
||||
std::swap( mptr[k1], mptr[k1+1] );
|
||||
}
|
||||
|
||||
|
||||
kHit = k1+1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( kHit < 0 ) // no appropriate gaussian mixture found at all, remove the weakest mixture and create a new one
|
||||
{
|
||||
kHit = k = min(k, K-1);
|
||||
@@ -335,7 +335,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
else
|
||||
for( ; k < K; k++ )
|
||||
wsum += mptr[k].weight;
|
||||
|
||||
|
||||
float wscale = 1.f/wsum;
|
||||
wsum = 0;
|
||||
for( k = 0; k < K; k++ )
|
||||
@@ -345,7 +345,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
if( wsum > T && kForeground < 0 )
|
||||
kForeground = k+1;
|
||||
}
|
||||
|
||||
|
||||
dst[x] = (uchar)(-(kHit >= kForeground));
|
||||
}
|
||||
}
|
||||
@@ -355,7 +355,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
{
|
||||
Vec3f pix(src[x*3], src[x*3+1], src[x*3+2]);
|
||||
int kHit = -1, kForeground = -1;
|
||||
|
||||
|
||||
for( k = 0; k < K; k++ )
|
||||
{
|
||||
if( mptr[k].weight < FLT_EPSILON )
|
||||
@@ -370,7 +370,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( kHit >= 0 )
|
||||
{
|
||||
float wsum = 0;
|
||||
@@ -384,7 +384,7 @@ static void process8uC3( const Mat& image, Mat& fgmask, double learningRate,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
dst[x] = (uchar)(kHit < 0 || kHit >= kForeground ? 255 : 0);
|
||||
}
|
||||
}
|
||||
@@ -395,18 +395,18 @@ void BackgroundSubtractorMOG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
{
|
||||
Mat image = _image.getMat();
|
||||
bool needToInitialize = nframes == 0 || learningRate >= 1 || image.size() != frameSize || image.type() != frameType;
|
||||
|
||||
|
||||
if( needToInitialize )
|
||||
initialize(image.size(), image.type());
|
||||
|
||||
|
||||
CV_Assert( image.depth() == CV_8U );
|
||||
_fgmask.create( image.size(), CV_8U );
|
||||
Mat fgmask = _fgmask.getMat();
|
||||
|
||||
|
||||
++nframes;
|
||||
learningRate = learningRate >= 0 && nframes > 1 ? learningRate : 1./min( nframes, history );
|
||||
CV_Assert(learningRate >= 0);
|
||||
|
||||
|
||||
if( image.type() == CV_8UC1 )
|
||||
process8uC1( image, fgmask, learningRate, bgmodel, nmixtures, backgroundRatio, varThreshold, noiseSigma );
|
||||
else if( image.type() == CV_8UC3 )
|
||||
@@ -414,7 +414,7 @@ void BackgroundSubtractorMOG::operator()(InputArray _image, OutputArray _fgmask,
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 1- and 3-channel 8-bit images are supported in BackgroundSubtractorMOG" );
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
||||
Reference in New Issue
Block a user