Normalize line endings and whitespace
This commit is contained in:

committed by
Andrey Kamaev

parent
69020da607
commit
04384a71e4
@@ -200,12 +200,12 @@ typedef struct CvLSVMFilterObject{
|
||||
// score_threshold - confidence level threshold
|
||||
typedef struct CvLatentSvmDetector
|
||||
{
|
||||
int num_filters;
|
||||
int num_components;
|
||||
int* num_part_filters;
|
||||
CvLSVMFilterObject** filters;
|
||||
float* b;
|
||||
float score_threshold;
|
||||
int num_filters;
|
||||
int num_components;
|
||||
int* num_part_filters;
|
||||
CvLSVMFilterObject** filters;
|
||||
float* b;
|
||||
float score_threshold;
|
||||
}
|
||||
CvLatentSvmDetector;
|
||||
|
||||
@@ -215,8 +215,8 @@ CvLatentSvmDetector;
|
||||
// score - confidence level
|
||||
typedef struct CvObjectDetection
|
||||
{
|
||||
CvRect rect;
|
||||
float score;
|
||||
CvRect rect;
|
||||
float score;
|
||||
} CvObjectDetection;
|
||||
|
||||
//////////////// Object Detection using Latent SVM //////////////
|
||||
@@ -229,7 +229,7 @@ typedef struct CvObjectDetection
|
||||
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
|
||||
// INPUT
|
||||
// filename - path to the file containing the parameters of
|
||||
- trained Latent SVM detector
|
||||
- trained Latent SVM detector
|
||||
// OUTPUT
|
||||
// trained Latent SVM detector in internal representation
|
||||
*/
|
||||
@@ -267,9 +267,9 @@ CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
|
||||
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
|
||||
*/
|
||||
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
|
||||
CvLatentSvmDetector* detector,
|
||||
CvMemStorage* storage,
|
||||
float overlap_threshold CV_DEFAULT(0.5f),
|
||||
CvLatentSvmDetector* detector,
|
||||
CvMemStorage* storage,
|
||||
float overlap_threshold CV_DEFAULT(0.5f),
|
||||
int numThreads CV_DEFAULT(-1));
|
||||
|
||||
#ifdef __cplusplus
|
||||
@@ -333,7 +333,7 @@ CV_EXPORTS void groupRectangles( vector<Rect>& rectList, int groupThreshold, dou
|
||||
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels,
|
||||
vector<double>& levelWeights, int groupThreshold, double eps=0.2);
|
||||
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales,
|
||||
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
||||
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
|
||||
|
||||
|
||||
class CV_EXPORTS FeatureEvaluator
|
||||
@@ -359,10 +359,10 @@ template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
|
||||
|
||||
enum
|
||||
{
|
||||
CASCADE_DO_CANNY_PRUNING=1,
|
||||
CASCADE_SCALE_IMAGE=2,
|
||||
CASCADE_FIND_BIGGEST_OBJECT=4,
|
||||
CASCADE_DO_ROUGH_SEARCH=8
|
||||
CASCADE_DO_CANNY_PRUNING=1,
|
||||
CASCADE_SCALE_IMAGE=2,
|
||||
CASCADE_FIND_BIGGEST_OBJECT=4,
|
||||
CASCADE_DO_ROUGH_SEARCH=8
|
||||
};
|
||||
|
||||
class CV_EXPORTS_W CascadeClassifier
|
||||
@@ -509,7 +509,7 @@ public:
|
||||
enum { DEFAULT_NLEVELS=64 };
|
||||
|
||||
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
|
||||
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
||||
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
|
||||
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
|
||||
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
|
||||
{}
|
||||
@@ -554,33 +554,33 @@ public:
|
||||
CV_OUT vector<float>& descriptors,
|
||||
Size winStride=Size(), Size padding=Size(),
|
||||
const vector<Point>& locations=vector<Point>()) const;
|
||||
//with found weights output
|
||||
//with found weights output
|
||||
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
|
||||
CV_OUT vector<double>& weights,
|
||||
CV_OUT vector<double>& weights,
|
||||
double hitThreshold=0, Size winStride=Size(),
|
||||
Size padding=Size(),
|
||||
Size padding=Size(),
|
||||
const vector<Point>& searchLocations=vector<Point>()) const;
|
||||
//without found weights output
|
||||
//without found weights output
|
||||
virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
|
||||
double hitThreshold=0, Size winStride=Size(),
|
||||
Size padding=Size(),
|
||||
const vector<Point>& searchLocations=vector<Point>()) const;
|
||||
//with result weights output
|
||||
//with result weights output
|
||||
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
|
||||
CV_OUT vector<double>& foundWeights, double hitThreshold=0,
|
||||
Size winStride=Size(), Size padding=Size(), double scale=1.05,
|
||||
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
|
||||
//without found weights output
|
||||
virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
|
||||
double hitThreshold=0, Size winStride=Size(),
|
||||
CV_OUT vector<double>& foundWeights, double hitThreshold=0,
|
||||
Size winStride=Size(), Size padding=Size(), double scale=1.05,
|
||||
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
|
||||
//without found weights output
|
||||
virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
|
||||
double hitThreshold=0, Size winStride=Size(),
|
||||
Size padding=Size(), double scale=1.05,
|
||||
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
|
||||
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
|
||||
|
||||
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
|
||||
Size paddingTL=Size(), Size paddingBR=Size()) const;
|
||||
|
||||
CV_WRAP static vector<float> getDefaultPeopleDetector();
|
||||
CV_WRAP static vector<float> getDaimlerPeopleDetector();
|
||||
CV_WRAP static vector<float> getDaimlerPeopleDetector();
|
||||
|
||||
CV_PROP Size winSize;
|
||||
CV_PROP Size blockSize;
|
||||
@@ -764,7 +764,7 @@ public:
|
||||
* in quantized image and cannot be extracted as features.
|
||||
*/
|
||||
Ptr<QuantizedPyramid> process(const Mat& src,
|
||||
const Mat& mask = Mat()) const
|
||||
const Mat& mask = Mat()) const
|
||||
{
|
||||
return processImpl(src, mask);
|
||||
}
|
||||
@@ -791,7 +791,7 @@ public:
|
||||
protected:
|
||||
// Indirection is because process() has a default parameter.
|
||||
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
||||
const Mat& mask) const =0;
|
||||
const Mat& mask) const =0;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -826,7 +826,7 @@ public:
|
||||
|
||||
protected:
|
||||
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
||||
const Mat& mask) const;
|
||||
const Mat& mask) const;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -865,7 +865,7 @@ public:
|
||||
|
||||
protected:
|
||||
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
|
||||
const Mat& mask) const;
|
||||
const Mat& mask) const;
|
||||
};
|
||||
|
||||
/**
|
||||
@@ -963,7 +963,7 @@ public:
|
||||
* \return Template ID, or -1 if failed to extract a valid template.
|
||||
*/
|
||||
int addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
|
||||
const Mat& object_mask, Rect* bounding_box = NULL);
|
||||
const Mat& object_mask, Rect* bounding_box = NULL);
|
||||
|
||||
/**
|
||||
* \brief Add a new object template computed by external means.
|
||||
|
Reference in New Issue
Block a user