Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 03:18:30 +04:00
committed by Andrey Kamaev
parent 69020da607
commit 04384a71e4
1516 changed files with 258846 additions and 258162 deletions

View File

@@ -200,12 +200,12 @@ typedef struct CvLSVMFilterObject{
// score_threshold - confidence level threshold
typedef struct CvLatentSvmDetector
{
int num_filters;
int num_components;
int* num_part_filters;
CvLSVMFilterObject** filters;
float* b;
float score_threshold;
int num_filters;
int num_components;
int* num_part_filters;
CvLSVMFilterObject** filters;
float* b;
float score_threshold;
}
CvLatentSvmDetector;
@@ -215,8 +215,8 @@ CvLatentSvmDetector;
// score - confidence level
typedef struct CvObjectDetection
{
CvRect rect;
float score;
CvRect rect;
float score;
} CvObjectDetection;
//////////////// Object Detection using Latent SVM //////////////
@@ -229,7 +229,7 @@ typedef struct CvObjectDetection
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
- trained Latent SVM detector
- trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
@@ -267,9 +267,9 @@ CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold CV_DEFAULT(0.5f),
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold CV_DEFAULT(0.5f),
int numThreads CV_DEFAULT(-1));
#ifdef __cplusplus
@@ -333,7 +333,7 @@ CV_EXPORTS void groupRectangles( vector<Rect>& rectList, int groupThreshold, dou
CV_EXPORTS void groupRectangles(vector<Rect>& rectList, vector<int>& rejectLevels,
vector<double>& levelWeights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles_meanshift(vector<Rect>& rectList, vector<double>& foundWeights, vector<double>& foundScales,
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
class CV_EXPORTS FeatureEvaluator
@@ -359,10 +359,10 @@ template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
enum
{
CASCADE_DO_CANNY_PRUNING=1,
CASCADE_SCALE_IMAGE=2,
CASCADE_FIND_BIGGEST_OBJECT=4,
CASCADE_DO_ROUGH_SEARCH=8
CASCADE_DO_CANNY_PRUNING=1,
CASCADE_SCALE_IMAGE=2,
CASCADE_FIND_BIGGEST_OBJECT=4,
CASCADE_DO_ROUGH_SEARCH=8
};
class CV_EXPORTS_W CascadeClassifier
@@ -509,7 +509,7 @@ public:
enum { DEFAULT_NLEVELS=64 };
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
{}
@@ -554,33 +554,33 @@ public:
CV_OUT vector<float>& descriptors,
Size winStride=Size(), Size padding=Size(),
const vector<Point>& locations=vector<Point>()) const;
//with found weights output
//with found weights output
CV_WRAP virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
CV_OUT vector<double>& weights,
CV_OUT vector<double>& weights,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
Size padding=Size(),
const vector<Point>& searchLocations=vector<Point>()) const;
//without found weights output
//without found weights output
virtual void detect(const Mat& img, CV_OUT vector<Point>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
const vector<Point>& searchLocations=vector<Point>()) const;
//with result weights output
//with result weights output
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
CV_OUT vector<double>& foundWeights, double hitThreshold=0,
Size winStride=Size(), Size padding=Size(), double scale=1.05,
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
//without found weights output
virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
CV_OUT vector<double>& foundWeights, double hitThreshold=0,
Size winStride=Size(), Size padding=Size(), double scale=1.05,
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
//without found weights output
virtual void detectMultiScale(const Mat& img, CV_OUT vector<Rect>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(), double scale=1.05,
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
Size paddingTL=Size(), Size paddingBR=Size()) const;
CV_WRAP static vector<float> getDefaultPeopleDetector();
CV_WRAP static vector<float> getDaimlerPeopleDetector();
CV_WRAP static vector<float> getDaimlerPeopleDetector();
CV_PROP Size winSize;
CV_PROP Size blockSize;
@@ -764,7 +764,7 @@ public:
* in quantized image and cannot be extracted as features.
*/
Ptr<QuantizedPyramid> process(const Mat& src,
const Mat& mask = Mat()) const
const Mat& mask = Mat()) const
{
return processImpl(src, mask);
}
@@ -791,7 +791,7 @@ public:
protected:
// Indirection is because process() has a default parameter.
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const =0;
const Mat& mask) const =0;
};
/**
@@ -826,7 +826,7 @@ public:
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
const Mat& mask) const;
};
/**
@@ -865,7 +865,7 @@ public:
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
const Mat& mask) const;
};
/**
@@ -963,7 +963,7 @@ public:
* \return Template ID, or -1 if failed to extract a valid template.
*/
int addTemplate(const std::vector<Mat>& sources, const std::string& class_id,
const Mat& object_mask, Rect* bounding_box = NULL);
const Mat& object_mask, Rect* bounding_box = NULL);
/**
* \brief Add a new object template computed by external means.