Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 03:18:30 +04:00
committed by Andrey Kamaev
parent 69020da607
commit 04384a71e4
1516 changed files with 258846 additions and 258162 deletions

View File

@@ -1215,8 +1215,8 @@ void FernClassifier::setVerbose(bool _verbose)
{
verbose = _verbose;
}
/****************************************************************************************\
* FernDescriptorMatcher *
\****************************************************************************************/
@@ -1252,7 +1252,7 @@ FernDescriptorMatcher::~FernDescriptorMatcher()
void FernDescriptorMatcher::clear()
{
GenericDescriptorMatcher::clear();
classifier.release();
prevTrainCount = 0;
}
@@ -1262,11 +1262,11 @@ void FernDescriptorMatcher::train()
if( classifier.empty() || prevTrainCount < (int)trainPointCollection.keypointCount() )
{
assert( params.filename.empty() );
vector<vector<Point2f> > points( trainPointCollection.imageCount() );
for( size_t imgIdx = 0; imgIdx < trainPointCollection.imageCount(); imgIdx++ )
KeyPoint::convert( trainPointCollection.getKeypoints((int)imgIdx), points[imgIdx] );
classifier = new FernClassifier( points, trainPointCollection.getImages(), vector<vector<int> >(), 0, // each points is a class
params.patchSize, params.signatureSize, params.nstructs, params.structSize,
params.nviews, params.compressionMethod, params.patchGenerator );
@@ -1282,7 +1282,7 @@ void FernDescriptorMatcher::calcBestProbAndMatchIdx( const Mat& image, const Poi
float& bestProb, int& bestMatchIdx, vector<float>& signature )
{
(*classifier)( image, pt, signature);
bestProb = -FLT_MAX;
bestMatchIdx = -1;
for( int ci = 0; ci < classifier->getClassCount(); ci++ )
@@ -1300,14 +1300,14 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint
const vector<Mat>& /*masks*/, bool /*compactResult*/ )
{
train();
matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t queryIdx = 0; queryIdx < queryKeypoints.size(); queryIdx++ )
{
(*classifier)( queryImage, queryKeypoints[queryIdx].pt, signature);
for( int k = 0; k < knn; k++ )
{
DMatch bestMatch;
@@ -1322,7 +1322,7 @@ void FernDescriptorMatcher::knnMatchImpl( const Mat& queryImage, vector<KeyPoint
best_ci = ci;
}
}
if( bestMatch.trainIdx == -1 )
break;
signature[best_ci] = -std::numeric_limits<float>::max();
@@ -1338,11 +1338,11 @@ void FernDescriptorMatcher::radiusMatchImpl( const Mat& queryImage, vector<KeyPo
train();
matches.resize( queryKeypoints.size() );
vector<float> signature( (size_t)classifier->getClassCount() );
for( size_t i = 0; i < queryKeypoints.size(); i++ )
{
(*classifier)( queryImage, queryKeypoints[i].pt, signature);
for( int ci = 0; ci < classifier->getClassCount(); ci++ )
{
if( -signature[ci] < maxDistance )
@@ -1364,7 +1364,7 @@ void FernDescriptorMatcher::read( const FileNode &fn )
params.structSize = fn["structSize"];
params.nviews = fn["nviews"];
params.compressionMethod = fn["compressionMethod"];
//classifier->read(fn);
}
@@ -1377,7 +1377,7 @@ void FernDescriptorMatcher::write( FileStorage& fs ) const
fs << "structSize" << params.structSize;
fs << "nviews" << params.nviews;
fs << "compressionMethod" << params.compressionMethod;
// classifier->write(fs);
}
@@ -1393,7 +1393,7 @@ Ptr<GenericDescriptorMatcher> FernDescriptorMatcher::clone( bool emptyTrainData
{
CV_Error( CV_StsNotImplemented, "deep clone dunctionality is not implemented, because "
"FernClassifier has not copy constructor or clone method ");
//matcher->classifier;
matcher->params = params;
matcher->prevTrainCount = prevTrainCount;
@@ -1401,7 +1401,7 @@ Ptr<GenericDescriptorMatcher> FernDescriptorMatcher::clone( bool emptyTrainData
}
return matcher;
}
////////////////////////////////////// Planar Object Detector ////////////////////////////////////
PlanarObjectDetector::PlanarObjectDetector()
@@ -1440,7 +1440,7 @@ void PlanarObjectDetector::train(const vector<Mat>& pyr, int npoints,
ldetector = detector;
ldetector.setVerbose(verbose);
ldetector.getMostStable2D(pyr[0], modelPoints, npoints, patchGenerator);
npoints = (int)modelPoints.size();
fernClassifier.setVerbose(verbose);
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
@@ -1458,7 +1458,7 @@ void PlanarObjectDetector::train(const vector<Mat>& pyr, const vector<KeyPoint>&
ldetector.setVerbose(verbose);
modelPoints.resize(keypoints.size());
std::copy(keypoints.begin(), keypoints.end(), modelPoints.begin());
fernClassifier.setVerbose(verbose);
fernClassifier.trainFromSingleView(pyr[0], modelPoints,
patchSize, (int)modelPoints.size(), nstructs, structSize, nviews,
@@ -1479,7 +1479,7 @@ void PlanarObjectDetector::read(const FileNode& node)
void PlanarObjectDetector::write(FileStorage& fs, const String& objname) const
{
WriteStructContext ws(fs, objname, CV_NODE_MAP);
{
WriteStructContext wsroi(fs, "model-roi", CV_NODE_SEQ + CV_NODE_FLOW);
cv::write(fs, modelROI.x);
@@ -1499,7 +1499,7 @@ bool PlanarObjectDetector::operator()(const Mat& image, Mat& H, vector<Point2f>&
buildPyramid(image, pyr, ldetector.nOctaves - 1);
vector<KeyPoint> keypoints;
ldetector(pyr, keypoints);
return (*this)(pyr, keypoints, H, corners);
}
@@ -1511,7 +1511,7 @@ bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPo
vector<float> maxLogProb(m, -FLT_MAX);
vector<float> signature;
vector<Point2f> fromPt, toPt;
for( i = 0; i < n; i++ )
{
KeyPoint kpt = keypoints[i];
@@ -1525,20 +1525,20 @@ bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPo
bestMatches[k] = i;
}
}
if(pairs)
pairs->resize(0);
for( i = 0; i < m; i++ )
if( bestMatches[i] >= 0 )
{
fromPt.push_back(modelPoints[i].pt);
toPt.push_back(keypoints[bestMatches[i]].pt);
}
if( fromPt.size() < 4 )
return false;
vector<uchar> mask;
matH = findHomography(fromPt, toPt, RANSAC, 10, mask);
if( matH.data )
@@ -1554,7 +1554,7 @@ bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPo
(float)((H(1,0)*pt.x + H(1,1)*pt.y + H(1,2))*w));
}
}
if( pairs )
{
for( i = j = 0; i < m; i++ )
@@ -1564,7 +1564,7 @@ bool PlanarObjectDetector::operator()(const vector<Mat>& pyr, const vector<KeyPo
pairs->push_back(bestMatches[i]);
}
}
return matH.data != 0;
}