Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 03:18:30 +04:00
committed by Andrey Kamaev
parent 69020da607
commit 04384a71e4
1516 changed files with 258846 additions and 258162 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -1,442 +1,442 @@
#include "converters.h"
#if defined DEBUG && defined ANDROID
#include <android/log.h>
#define MODULE_LOG_TAG "OpenCV.converters"
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, MODULE_LOG_TAG, __VA_ARGS__))
#else //DEBUG
#define LOGD(...)
#endif //DEBUG
using namespace cv;
#define CHECK_MAT(cond) if(!(cond)){ LOGD("FAILED: " #cond); return; }
// vector_int
void Mat_to_vector_int(Mat& mat, vector<int>& v_int)
{
v_int.clear();
CHECK_MAT(mat.type()==CV_32SC1 && mat.cols==1);
v_int = (vector<int>) mat;
}
void vector_int_to_Mat(vector<int>& v_int, Mat& mat)
{
mat = Mat(v_int, true);
}
//vector_double
void Mat_to_vector_double(Mat& mat, vector<double>& v_double)
{
v_double.clear();
CHECK_MAT(mat.type()==CV_64FC1 && mat.cols==1);
v_double = (vector<double>) mat;
}
void vector_double_to_Mat(vector<double>& v_double, Mat& mat)
{
mat = Mat(v_double, true);
}
// vector_float
void Mat_to_vector_float(Mat& mat, vector<float>& v_float)
{
v_float.clear();
CHECK_MAT(mat.type()==CV_32FC1 && mat.cols==1);
v_float = (vector<float>) mat;
}
void vector_float_to_Mat(vector<float>& v_float, Mat& mat)
{
mat = Mat(v_float, true);
}
//vector_uchar
void Mat_to_vector_uchar(Mat& mat, vector<uchar>& v_uchar)
{
v_uchar.clear();
CHECK_MAT(mat.type()==CV_8UC1 && mat.cols==1);
v_uchar = (vector<uchar>) mat;
}
void vector_uchar_to_Mat(vector<uchar>& v_uchar, Mat& mat)
{
mat = Mat(v_uchar, true);
}
void Mat_to_vector_char(Mat& mat, vector<char>& v_char)
{
v_char.clear();
CHECK_MAT(mat.type()==CV_8SC1 && mat.cols==1);
v_char = (vector<char>) mat;
}
void vector_char_to_Mat(vector<char>& v_char, Mat& mat)
{
mat = Mat(v_char, true);
}
//vector_Rect
void Mat_to_vector_Rect(Mat& mat, vector<Rect>& v_rect)
{
v_rect.clear();
CHECK_MAT(mat.type()==CV_32SC4 && mat.cols==1);
v_rect = (vector<Rect>) mat;
}
void vector_Rect_to_Mat(vector<Rect>& v_rect, Mat& mat)
{
mat = Mat(v_rect, true);
}
//vector_Point
void Mat_to_vector_Point(Mat& mat, vector<Point>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32SC2 && mat.cols==1);
v_point = (vector<Point>) mat;
}
//vector_Point2f
void Mat_to_vector_Point2f(Mat& mat, vector<Point2f>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32FC2 && mat.cols==1);
v_point = (vector<Point2f>) mat;
}
//vector_Point2d
void Mat_to_vector_Point2d(Mat& mat, vector<Point2d>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_64FC2 && mat.cols==1);
v_point = (vector<Point2d>) mat;
}
//vector_Point3i
void Mat_to_vector_Point3i(Mat& mat, vector<Point3i>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32SC3 && mat.cols==1);
v_point = (vector<Point3i>) mat;
}
//vector_Point3f
void Mat_to_vector_Point3f(Mat& mat, vector<Point3f>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32FC3 && mat.cols==1);
v_point = (vector<Point3f>) mat;
}
//vector_Point3d
void Mat_to_vector_Point3d(Mat& mat, vector<Point3d>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_64FC3 && mat.cols==1);
v_point = (vector<Point3d>) mat;
}
void vector_Point_to_Mat(vector<Point>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point2f_to_Mat(vector<Point2f>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point2d_to_Mat(vector<Point2d>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3i_to_Mat(vector<Point3i>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3f_to_Mat(vector<Point3f>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3d_to_Mat(vector<Point3d>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
#ifdef HAVE_OPENCV_FEATURES2D
//vector_KeyPoint
void Mat_to_vector_KeyPoint(Mat& mat, vector<KeyPoint>& v_kp)
{
v_kp.clear();
CHECK_MAT(mat.type()==CV_32FC(7) && mat.cols==1);
for(int i=0; i<mat.rows; i++)
{
Vec<float, 7> v = mat.at< Vec<float, 7> >(i, 0);
KeyPoint kp(v[0], v[1], v[2], v[3], v[4], (int)v[5], (int)v[6]);
v_kp.push_back(kp);
}
return;
}
void vector_KeyPoint_to_Mat(vector<KeyPoint>& v_kp, Mat& mat)
{
int count = (int)v_kp.size();
mat.create(count, 1, CV_32FC(7));
for(int i=0; i<count; i++)
{
KeyPoint kp = v_kp[i];
mat.at< Vec<float, 7> >(i, 0) = Vec<float, 7>(kp.pt.x, kp.pt.y, kp.size, kp.angle, kp.response, (float)kp.octave, (float)kp.class_id);
}
}
#endif
//vector_Mat
void Mat_to_vector_Mat(cv::Mat& mat, std::vector<cv::Mat>& v_mat)
{
v_mat.clear();
if(mat.type() == CV_32SC2 && mat.cols == 1)
{
v_mat.reserve(mat.rows);
for(int i=0; i<mat.rows; i++)
{
Vec<int, 2> a = mat.at< Vec<int, 2> >(i, 0);
long long addr = (((long long)a[0])<<32) | a[1];
Mat& m = *( (Mat*) addr );
v_mat.push_back(m);
}
} else {
LOGD("Mat_to_vector_Mat() FAILED: mat.type() == CV_32SC2 && mat.cols == 1");
}
}
void vector_Mat_to_Mat(std::vector<cv::Mat>& v_mat, cv::Mat& mat)
{
int count = (int)v_mat.size();
mat.create(count, 1, CV_32SC2);
for(int i=0; i<count; i++)
{
long long addr = (long long) new Mat(v_mat[i]);
mat.at< Vec<int, 2> >(i, 0) = Vec<int, 2>(addr>>32, addr&0xffffffff);
}
}
#ifdef HAVE_OPENCV_FEATURES2D
//vector_DMatch
void Mat_to_vector_DMatch(Mat& mat, vector<DMatch>& v_dm)
{
v_dm.clear();
CHECK_MAT(mat.type()==CV_32FC4 && mat.cols==1);
for(int i=0; i<mat.rows; i++)
{
Vec<float, 4> v = mat.at< Vec<float, 4> >(i, 0);
DMatch dm((int)v[0], (int)v[1], (int)v[2], v[3]);
v_dm.push_back(dm);
}
return;
}
void vector_DMatch_to_Mat(vector<DMatch>& v_dm, Mat& mat)
{
int count = (int)v_dm.size();
mat.create(count, 1, CV_32FC4);
for(int i=0; i<count; i++)
{
DMatch dm = v_dm[i];
mat.at< Vec<float, 4> >(i, 0) = Vec<float, 4>((float)dm.queryIdx, (float)dm.trainIdx, (float)dm.imgIdx, dm.distance);
}
}
#endif
void Mat_to_vector_vector_Point(Mat& mat, vector< vector< Point > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point> vpt;
Mat_to_vector_Point(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
void Mat_to_vector_vector_Point2f(Mat& mat, vector< vector< Point2f > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point2f> vpt;
Mat_to_vector_Point2f(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
void Mat_to_vector_vector_Point3f(Mat& mat, vector< vector< Point3f > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point3f> vpt;
Mat_to_vector_Point3f(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_vector_KeyPoint(Mat& mat, vector< vector< KeyPoint > >& vv_kp)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<KeyPoint> vkp;
Mat_to_vector_KeyPoint(vm[i], vkp);
vv_kp.push_back(vkp);
}
}
void vector_vector_KeyPoint_to_Mat(vector< vector< KeyPoint > >& vv_kp, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_kp.size() );
for(size_t i=0; i<vv_kp.size(); i++)
{
Mat m;
vector_KeyPoint_to_Mat(vv_kp[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void Mat_to_vector_vector_DMatch(Mat& mat, vector< vector< DMatch > >& vv_dm)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<DMatch> vdm;
Mat_to_vector_DMatch(vm[i], vdm);
vv_dm.push_back(vdm);
}
}
void vector_vector_DMatch_to_Mat(vector< vector< DMatch > >& vv_dm, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_dm.size() );
for(size_t i=0; i<vv_dm.size(); i++)
{
Mat m;
vector_DMatch_to_Mat(vv_dm[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
#endif
void Mat_to_vector_vector_char(Mat& mat, vector< vector< char > >& vv_ch)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<char> vch;
Mat_to_vector_char(vm[i], vch);
vv_ch.push_back(vch);
}
}
void vector_vector_char_to_Mat(vector< vector< char > >& vv_ch, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_ch.size() );
for(size_t i=0; i<vv_ch.size(); i++)
{
Mat m;
vector_char_to_Mat(vv_ch[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point_to_Mat(vector< vector< Point > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point2f_to_Mat(vector< vector< Point2f > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point2f_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point3f_to_Mat(vector< vector< Point3f > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point3f_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_Vec4i_to_Mat(vector<Vec4i>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}
void vector_Vec4f_to_Mat(vector<Vec4f>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}
void vector_Vec6f_to_Mat(vector<Vec6f>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}
#include "converters.h"
#if defined DEBUG && defined ANDROID
#include <android/log.h>
#define MODULE_LOG_TAG "OpenCV.converters"
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, MODULE_LOG_TAG, __VA_ARGS__))
#else //DEBUG
#define LOGD(...)
#endif //DEBUG
using namespace cv;
#define CHECK_MAT(cond) if(!(cond)){ LOGD("FAILED: " #cond); return; }
// vector_int
void Mat_to_vector_int(Mat& mat, vector<int>& v_int)
{
v_int.clear();
CHECK_MAT(mat.type()==CV_32SC1 && mat.cols==1);
v_int = (vector<int>) mat;
}
void vector_int_to_Mat(vector<int>& v_int, Mat& mat)
{
mat = Mat(v_int, true);
}
//vector_double
void Mat_to_vector_double(Mat& mat, vector<double>& v_double)
{
v_double.clear();
CHECK_MAT(mat.type()==CV_64FC1 && mat.cols==1);
v_double = (vector<double>) mat;
}
void vector_double_to_Mat(vector<double>& v_double, Mat& mat)
{
mat = Mat(v_double, true);
}
// vector_float
void Mat_to_vector_float(Mat& mat, vector<float>& v_float)
{
v_float.clear();
CHECK_MAT(mat.type()==CV_32FC1 && mat.cols==1);
v_float = (vector<float>) mat;
}
void vector_float_to_Mat(vector<float>& v_float, Mat& mat)
{
mat = Mat(v_float, true);
}
//vector_uchar
void Mat_to_vector_uchar(Mat& mat, vector<uchar>& v_uchar)
{
v_uchar.clear();
CHECK_MAT(mat.type()==CV_8UC1 && mat.cols==1);
v_uchar = (vector<uchar>) mat;
}
void vector_uchar_to_Mat(vector<uchar>& v_uchar, Mat& mat)
{
mat = Mat(v_uchar, true);
}
void Mat_to_vector_char(Mat& mat, vector<char>& v_char)
{
v_char.clear();
CHECK_MAT(mat.type()==CV_8SC1 && mat.cols==1);
v_char = (vector<char>) mat;
}
void vector_char_to_Mat(vector<char>& v_char, Mat& mat)
{
mat = Mat(v_char, true);
}
//vector_Rect
void Mat_to_vector_Rect(Mat& mat, vector<Rect>& v_rect)
{
v_rect.clear();
CHECK_MAT(mat.type()==CV_32SC4 && mat.cols==1);
v_rect = (vector<Rect>) mat;
}
void vector_Rect_to_Mat(vector<Rect>& v_rect, Mat& mat)
{
mat = Mat(v_rect, true);
}
//vector_Point
void Mat_to_vector_Point(Mat& mat, vector<Point>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32SC2 && mat.cols==1);
v_point = (vector<Point>) mat;
}
//vector_Point2f
void Mat_to_vector_Point2f(Mat& mat, vector<Point2f>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32FC2 && mat.cols==1);
v_point = (vector<Point2f>) mat;
}
//vector_Point2d
void Mat_to_vector_Point2d(Mat& mat, vector<Point2d>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_64FC2 && mat.cols==1);
v_point = (vector<Point2d>) mat;
}
//vector_Point3i
void Mat_to_vector_Point3i(Mat& mat, vector<Point3i>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32SC3 && mat.cols==1);
v_point = (vector<Point3i>) mat;
}
//vector_Point3f
void Mat_to_vector_Point3f(Mat& mat, vector<Point3f>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_32FC3 && mat.cols==1);
v_point = (vector<Point3f>) mat;
}
//vector_Point3d
void Mat_to_vector_Point3d(Mat& mat, vector<Point3d>& v_point)
{
v_point.clear();
CHECK_MAT(mat.type()==CV_64FC3 && mat.cols==1);
v_point = (vector<Point3d>) mat;
}
void vector_Point_to_Mat(vector<Point>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point2f_to_Mat(vector<Point2f>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point2d_to_Mat(vector<Point2d>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3i_to_Mat(vector<Point3i>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3f_to_Mat(vector<Point3f>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
void vector_Point3d_to_Mat(vector<Point3d>& v_point, Mat& mat)
{
mat = Mat(v_point, true);
}
#ifdef HAVE_OPENCV_FEATURES2D
//vector_KeyPoint
void Mat_to_vector_KeyPoint(Mat& mat, vector<KeyPoint>& v_kp)
{
v_kp.clear();
CHECK_MAT(mat.type()==CV_32FC(7) && mat.cols==1);
for(int i=0; i<mat.rows; i++)
{
Vec<float, 7> v = mat.at< Vec<float, 7> >(i, 0);
KeyPoint kp(v[0], v[1], v[2], v[3], v[4], (int)v[5], (int)v[6]);
v_kp.push_back(kp);
}
return;
}
void vector_KeyPoint_to_Mat(vector<KeyPoint>& v_kp, Mat& mat)
{
int count = (int)v_kp.size();
mat.create(count, 1, CV_32FC(7));
for(int i=0; i<count; i++)
{
KeyPoint kp = v_kp[i];
mat.at< Vec<float, 7> >(i, 0) = Vec<float, 7>(kp.pt.x, kp.pt.y, kp.size, kp.angle, kp.response, (float)kp.octave, (float)kp.class_id);
}
}
#endif
//vector_Mat
void Mat_to_vector_Mat(cv::Mat& mat, std::vector<cv::Mat>& v_mat)
{
v_mat.clear();
if(mat.type() == CV_32SC2 && mat.cols == 1)
{
v_mat.reserve(mat.rows);
for(int i=0; i<mat.rows; i++)
{
Vec<int, 2> a = mat.at< Vec<int, 2> >(i, 0);
long long addr = (((long long)a[0])<<32) | a[1];
Mat& m = *( (Mat*) addr );
v_mat.push_back(m);
}
} else {
LOGD("Mat_to_vector_Mat() FAILED: mat.type() == CV_32SC2 && mat.cols == 1");
}
}
void vector_Mat_to_Mat(std::vector<cv::Mat>& v_mat, cv::Mat& mat)
{
int count = (int)v_mat.size();
mat.create(count, 1, CV_32SC2);
for(int i=0; i<count; i++)
{
long long addr = (long long) new Mat(v_mat[i]);
mat.at< Vec<int, 2> >(i, 0) = Vec<int, 2>(addr>>32, addr&0xffffffff);
}
}
#ifdef HAVE_OPENCV_FEATURES2D
//vector_DMatch
void Mat_to_vector_DMatch(Mat& mat, vector<DMatch>& v_dm)
{
v_dm.clear();
CHECK_MAT(mat.type()==CV_32FC4 && mat.cols==1);
for(int i=0; i<mat.rows; i++)
{
Vec<float, 4> v = mat.at< Vec<float, 4> >(i, 0);
DMatch dm((int)v[0], (int)v[1], (int)v[2], v[3]);
v_dm.push_back(dm);
}
return;
}
void vector_DMatch_to_Mat(vector<DMatch>& v_dm, Mat& mat)
{
int count = (int)v_dm.size();
mat.create(count, 1, CV_32FC4);
for(int i=0; i<count; i++)
{
DMatch dm = v_dm[i];
mat.at< Vec<float, 4> >(i, 0) = Vec<float, 4>((float)dm.queryIdx, (float)dm.trainIdx, (float)dm.imgIdx, dm.distance);
}
}
#endif
void Mat_to_vector_vector_Point(Mat& mat, vector< vector< Point > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point> vpt;
Mat_to_vector_Point(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
void Mat_to_vector_vector_Point2f(Mat& mat, vector< vector< Point2f > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point2f> vpt;
Mat_to_vector_Point2f(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
void Mat_to_vector_vector_Point3f(Mat& mat, vector< vector< Point3f > >& vv_pt)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<Point3f> vpt;
Mat_to_vector_Point3f(vm[i], vpt);
vv_pt.push_back(vpt);
}
}
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_vector_KeyPoint(Mat& mat, vector< vector< KeyPoint > >& vv_kp)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<KeyPoint> vkp;
Mat_to_vector_KeyPoint(vm[i], vkp);
vv_kp.push_back(vkp);
}
}
void vector_vector_KeyPoint_to_Mat(vector< vector< KeyPoint > >& vv_kp, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_kp.size() );
for(size_t i=0; i<vv_kp.size(); i++)
{
Mat m;
vector_KeyPoint_to_Mat(vv_kp[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void Mat_to_vector_vector_DMatch(Mat& mat, vector< vector< DMatch > >& vv_dm)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<DMatch> vdm;
Mat_to_vector_DMatch(vm[i], vdm);
vv_dm.push_back(vdm);
}
}
void vector_vector_DMatch_to_Mat(vector< vector< DMatch > >& vv_dm, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_dm.size() );
for(size_t i=0; i<vv_dm.size(); i++)
{
Mat m;
vector_DMatch_to_Mat(vv_dm[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
#endif
void Mat_to_vector_vector_char(Mat& mat, vector< vector< char > >& vv_ch)
{
vector<Mat> vm;
vm.reserve( mat.rows );
Mat_to_vector_Mat(mat, vm);
for(size_t i=0; i<vm.size(); i++)
{
vector<char> vch;
Mat_to_vector_char(vm[i], vch);
vv_ch.push_back(vch);
}
}
void vector_vector_char_to_Mat(vector< vector< char > >& vv_ch, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_ch.size() );
for(size_t i=0; i<vv_ch.size(); i++)
{
Mat m;
vector_char_to_Mat(vv_ch[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point_to_Mat(vector< vector< Point > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point2f_to_Mat(vector< vector< Point2f > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point2f_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_vector_Point3f_to_Mat(vector< vector< Point3f > >& vv_pt, Mat& mat)
{
vector<Mat> vm;
vm.reserve( vv_pt.size() );
for(size_t i=0; i<vv_pt.size(); i++)
{
Mat m;
vector_Point3f_to_Mat(vv_pt[i], m);
vm.push_back(m);
}
vector_Mat_to_Mat(vm, mat);
}
void vector_Vec4i_to_Mat(vector<Vec4i>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}
void vector_Vec4f_to_Mat(vector<Vec4f>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}
void vector_Vec6f_to_Mat(vector<Vec6f>& v_vec, Mat& mat)
{
mat = Mat(v_vec, true);
}

View File

@@ -1,73 +1,73 @@
#include <jni.h>
#include "opencv2/opencv_modules.hpp"
#include "opencv2/core/core.hpp"
#include "features2d_manual.hpp"
void Mat_to_vector_int(cv::Mat& mat, std::vector<int>& v_int);
void vector_int_to_Mat(std::vector<int>& v_int, cv::Mat& mat);
void Mat_to_vector_double(cv::Mat& mat, std::vector<double>& v_double);
void vector_double_to_Mat(std::vector<double>& v_double, cv::Mat& mat);
void Mat_to_vector_float(cv::Mat& mat, std::vector<float>& v_float);
void vector_float_to_Mat(std::vector<float>& v_float, cv::Mat& mat);
void Mat_to_vector_uchar(cv::Mat& mat, std::vector<uchar>& v_uchar);
void vector_uchar_to_Mat(std::vector<uchar>& v_uchar, cv::Mat& mat);
void Mat_to_vector_char(cv::Mat& mat, std::vector<char>& v_char);
void vector_char_to_Mat(std::vector<char>& v_char, cv::Mat& mat);
void Mat_to_vector_Rect(cv::Mat& mat, std::vector<cv::Rect>& v_rect);
void vector_Rect_to_Mat(std::vector<cv::Rect>& v_rect, cv::Mat& mat);
void Mat_to_vector_Point(cv::Mat& mat, std::vector<cv::Point>& v_point);
void Mat_to_vector_Point2f(cv::Mat& mat, std::vector<cv::Point2f>& v_point);
void Mat_to_vector_Point2d(cv::Mat& mat, std::vector<cv::Point2d>& v_point);
void Mat_to_vector_Point3i(cv::Mat& mat, std::vector<cv::Point3i>& v_point);
void Mat_to_vector_Point3f(cv::Mat& mat, std::vector<cv::Point3f>& v_point);
void Mat_to_vector_Point3d(cv::Mat& mat, std::vector<cv::Point3d>& v_point);
void vector_Point_to_Mat(std::vector<cv::Point>& v_point, cv::Mat& mat);
void vector_Point2f_to_Mat(std::vector<cv::Point2f>& v_point, cv::Mat& mat);
void vector_Point2d_to_Mat(std::vector<cv::Point2d>& v_point, cv::Mat& mat);
void vector_Point3i_to_Mat(std::vector<cv::Point3i>& v_point, cv::Mat& mat);
void vector_Point3f_to_Mat(std::vector<cv::Point3f>& v_point, cv::Mat& mat);
void vector_Point3d_to_Mat(std::vector<cv::Point3d>& v_point, cv::Mat& mat);
void vector_Vec4i_to_Mat(std::vector<cv::Vec4i>& v_vec, cv::Mat& mat);
void vector_Vec4f_to_Mat(std::vector<cv::Vec4f>& v_vec, cv::Mat& mat);
void vector_Vec6f_to_Mat(std::vector<cv::Vec6f>& v_vec, cv::Mat& mat);
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_KeyPoint(cv::Mat& mat, std::vector<cv::KeyPoint>& v_kp);
void vector_KeyPoint_to_Mat(std::vector<cv::KeyPoint>& v_kp, cv::Mat& mat);
#endif
void Mat_to_vector_Mat(cv::Mat& mat, std::vector<cv::Mat>& v_mat);
void vector_Mat_to_Mat(std::vector<cv::Mat>& v_mat, cv::Mat& mat);
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_DMatch(cv::Mat& mat, std::vector<cv::DMatch>& v_dm);
void vector_DMatch_to_Mat(std::vector<cv::DMatch>& v_dm, cv::Mat& mat);
void Mat_to_vector_vector_KeyPoint(cv::Mat& mat, std::vector< std::vector< cv::KeyPoint > >& vv_kp);
void vector_vector_KeyPoint_to_Mat(std::vector< std::vector< cv::KeyPoint > >& vv_kp, cv::Mat& mat);
void Mat_to_vector_vector_DMatch(cv::Mat& mat, std::vector< std::vector< cv::DMatch > >& vv_dm);
void vector_vector_DMatch_to_Mat(std::vector< std::vector< cv::DMatch > >& vv_dm, cv::Mat& mat);
#endif
void Mat_to_vector_vector_char(cv::Mat& mat, std::vector< std::vector< char > >& vv_ch);
void vector_vector_char_to_Mat(std::vector< std::vector< char > >& vv_ch, cv::Mat& mat);
void Mat_to_vector_vector_Point(cv::Mat& mat, std::vector< std::vector< cv::Point > >& vv_pt);
void vector_vector_Point_to_Mat(std::vector< std::vector< cv::Point > >& vv_pt, cv::Mat& mat);
void Mat_to_vector_vector_Point2f(cv::Mat& mat, std::vector< std::vector< cv::Point2f > >& vv_pt);
void vector_vector_Point2f_to_Mat(std::vector< std::vector< cv::Point2f > >& vv_pt, cv::Mat& mat);
void Mat_to_vector_vector_Point3f(cv::Mat& mat, std::vector< std::vector< cv::Point3f > >& vv_pt);
void vector_vector_Point3f_to_Mat(std::vector< std::vector< cv::Point3f > >& vv_pt, cv::Mat& mat);
#include <jni.h>
#include "opencv2/opencv_modules.hpp"
#include "opencv2/core/core.hpp"
#include "features2d_manual.hpp"
void Mat_to_vector_int(cv::Mat& mat, std::vector<int>& v_int);
void vector_int_to_Mat(std::vector<int>& v_int, cv::Mat& mat);
void Mat_to_vector_double(cv::Mat& mat, std::vector<double>& v_double);
void vector_double_to_Mat(std::vector<double>& v_double, cv::Mat& mat);
void Mat_to_vector_float(cv::Mat& mat, std::vector<float>& v_float);
void vector_float_to_Mat(std::vector<float>& v_float, cv::Mat& mat);
void Mat_to_vector_uchar(cv::Mat& mat, std::vector<uchar>& v_uchar);
void vector_uchar_to_Mat(std::vector<uchar>& v_uchar, cv::Mat& mat);
void Mat_to_vector_char(cv::Mat& mat, std::vector<char>& v_char);
void vector_char_to_Mat(std::vector<char>& v_char, cv::Mat& mat);
void Mat_to_vector_Rect(cv::Mat& mat, std::vector<cv::Rect>& v_rect);
void vector_Rect_to_Mat(std::vector<cv::Rect>& v_rect, cv::Mat& mat);
void Mat_to_vector_Point(cv::Mat& mat, std::vector<cv::Point>& v_point);
void Mat_to_vector_Point2f(cv::Mat& mat, std::vector<cv::Point2f>& v_point);
void Mat_to_vector_Point2d(cv::Mat& mat, std::vector<cv::Point2d>& v_point);
void Mat_to_vector_Point3i(cv::Mat& mat, std::vector<cv::Point3i>& v_point);
void Mat_to_vector_Point3f(cv::Mat& mat, std::vector<cv::Point3f>& v_point);
void Mat_to_vector_Point3d(cv::Mat& mat, std::vector<cv::Point3d>& v_point);
void vector_Point_to_Mat(std::vector<cv::Point>& v_point, cv::Mat& mat);
void vector_Point2f_to_Mat(std::vector<cv::Point2f>& v_point, cv::Mat& mat);
void vector_Point2d_to_Mat(std::vector<cv::Point2d>& v_point, cv::Mat& mat);
void vector_Point3i_to_Mat(std::vector<cv::Point3i>& v_point, cv::Mat& mat);
void vector_Point3f_to_Mat(std::vector<cv::Point3f>& v_point, cv::Mat& mat);
void vector_Point3d_to_Mat(std::vector<cv::Point3d>& v_point, cv::Mat& mat);
void vector_Vec4i_to_Mat(std::vector<cv::Vec4i>& v_vec, cv::Mat& mat);
void vector_Vec4f_to_Mat(std::vector<cv::Vec4f>& v_vec, cv::Mat& mat);
void vector_Vec6f_to_Mat(std::vector<cv::Vec6f>& v_vec, cv::Mat& mat);
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_KeyPoint(cv::Mat& mat, std::vector<cv::KeyPoint>& v_kp);
void vector_KeyPoint_to_Mat(std::vector<cv::KeyPoint>& v_kp, cv::Mat& mat);
#endif
void Mat_to_vector_Mat(cv::Mat& mat, std::vector<cv::Mat>& v_mat);
void vector_Mat_to_Mat(std::vector<cv::Mat>& v_mat, cv::Mat& mat);
#ifdef HAVE_OPENCV_FEATURES2D
void Mat_to_vector_DMatch(cv::Mat& mat, std::vector<cv::DMatch>& v_dm);
void vector_DMatch_to_Mat(std::vector<cv::DMatch>& v_dm, cv::Mat& mat);
void Mat_to_vector_vector_KeyPoint(cv::Mat& mat, std::vector< std::vector< cv::KeyPoint > >& vv_kp);
void vector_vector_KeyPoint_to_Mat(std::vector< std::vector< cv::KeyPoint > >& vv_kp, cv::Mat& mat);
void Mat_to_vector_vector_DMatch(cv::Mat& mat, std::vector< std::vector< cv::DMatch > >& vv_dm);
void vector_vector_DMatch_to_Mat(std::vector< std::vector< cv::DMatch > >& vv_dm, cv::Mat& mat);
#endif
void Mat_to_vector_vector_char(cv::Mat& mat, std::vector< std::vector< char > >& vv_ch);
void vector_vector_char_to_Mat(std::vector< std::vector< char > >& vv_ch, cv::Mat& mat);
void Mat_to_vector_vector_Point(cv::Mat& mat, std::vector< std::vector< cv::Point > >& vv_pt);
void vector_vector_Point_to_Mat(std::vector< std::vector< cv::Point > >& vv_pt, cv::Mat& mat);
void Mat_to_vector_vector_Point2f(cv::Mat& mat, std::vector< std::vector< cv::Point2f > >& vv_pt);
void vector_vector_Point2f_to_Mat(std::vector< std::vector< cv::Point2f > >& vv_pt, cv::Mat& mat);
void Mat_to_vector_vector_Point3f(cv::Mat& mat, std::vector< std::vector< cv::Point3f > >& vv_pt);
void vector_vector_Point3f_to_Mat(std::vector< std::vector< cv::Point3f > >& vv_pt, cv::Mat& mat);

View File

@@ -1,26 +1,26 @@
#pragma once
#include "opencv2/core/core.hpp"
#if 0
namespace cv
{
CV_EXPORTS_W void add(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void subtract(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void multiply(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void divide(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void absdiff(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void compare(InputArray src1, Scalar src2, OutputArray dst, int cmpop);
CV_EXPORTS_W void min(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void max(InputArray src1, Scalar src2, OutputArray dst);
}
#endif //0
#pragma once
#include "opencv2/core/core.hpp"
#if 0
namespace cv
{
CV_EXPORTS_W void add(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void subtract(InputArray src1, Scalar src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1);
CV_EXPORTS_W void multiply(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void divide(InputArray src1, Scalar src2, OutputArray dst, double scale=1, int dtype=-1);
CV_EXPORTS_W void absdiff(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void compare(InputArray src1, Scalar src2, OutputArray dst, int cmpop);
CV_EXPORTS_W void min(InputArray src1, Scalar src2, OutputArray dst);
CV_EXPORTS_W void max(InputArray src1, Scalar src2, OutputArray dst);
}
#endif //0

View File

@@ -1,474 +1,474 @@
#ifndef __OPENCV_FEATURES_2D_MANUAL_HPP__
#define __OPENCV_FEATURES_2D_MANUAL_HPP__
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_FEATURES2D
#include "opencv2/features2d/features2d.hpp"
#undef SIMPLEBLOB // to solve conflict with wincrypt.h on windows
namespace cv
{
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector : public FeatureDetector
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
CV_WRAP void detect( const vector<Mat>& images, CV_OUT vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
CV_WRAP virtual bool empty() const;
#endif
enum
{
FAST = 1,
STAR = 2,
SIFT = 3,
SURF = 4,
ORB = 5,
MSER = 6,
GFTT = 7,
HARRIS = 8,
SIMPLEBLOB = 9,
DENSE = 10,
BRISK = 11,
GRIDDETECTOR = 1000,
GRIDRETECTOR = 1000,
GRID_FAST = GRIDDETECTOR + FAST,
GRID_STAR = GRIDDETECTOR + STAR,
GRID_SIFT = GRIDDETECTOR + SIFT,
GRID_SURF = GRIDDETECTOR + SURF,
GRID_ORB = GRIDDETECTOR + ORB,
GRID_MSER = GRIDDETECTOR + MSER,
GRID_GFTT = GRIDDETECTOR + GFTT,
GRID_HARRIS = GRIDDETECTOR + HARRIS,
GRID_SIMPLEBLOB = GRIDDETECTOR + SIMPLEBLOB,
GRID_DENSE = GRIDDETECTOR + DENSE,
GRID_BRISK = GRIDDETECTOR + BRISK,
PYRAMIDDETECTOR = 2000,
PYRAMID_FAST = PYRAMIDDETECTOR + FAST,
PYRAMID_STAR = PYRAMIDDETECTOR + STAR,
PYRAMID_SIFT = PYRAMIDDETECTOR + SIFT,
PYRAMID_SURF = PYRAMIDDETECTOR + SURF,
PYRAMID_ORB = PYRAMIDDETECTOR + ORB,
PYRAMID_MSER = PYRAMIDDETECTOR + MSER,
PYRAMID_GFTT = PYRAMIDDETECTOR + GFTT,
PYRAMID_HARRIS = PYRAMIDDETECTOR + HARRIS,
PYRAMID_SIMPLEBLOB = PYRAMIDDETECTOR + SIMPLEBLOB,
PYRAMID_DENSE = PYRAMIDDETECTOR + DENSE,
PYRAMID_BRISK = PYRAMIDDETECTOR + BRISK,
DYNAMICDETECTOR = 3000,
DYNAMIC_FAST = DYNAMICDETECTOR + FAST,
DYNAMIC_STAR = DYNAMICDETECTOR + STAR,
DYNAMIC_SIFT = DYNAMICDETECTOR + SIFT,
DYNAMIC_SURF = DYNAMICDETECTOR + SURF,
DYNAMIC_ORB = DYNAMICDETECTOR + ORB,
DYNAMIC_MSER = DYNAMICDETECTOR + MSER,
DYNAMIC_GFTT = DYNAMICDETECTOR + GFTT,
DYNAMIC_HARRIS = DYNAMICDETECTOR + HARRIS,
DYNAMIC_SIMPLEBLOB = DYNAMICDETECTOR + SIMPLEBLOB,
DYNAMIC_DENSE = DYNAMICDETECTOR + DENSE,
DYNAMIC_BRISK = DYNAMICDETECTOR + BRISK
};
//supported: FAST STAR SIFT SURF ORB MSER GFTT HARRIS BRISK Grid(XXXX) Pyramid(XXXX) Dynamic(XXXX)
//not supported: SimpleBlob, Dense
CV_WRAP static javaFeatureDetector* create( int detectorType )
{
string name;
if (detectorType > DYNAMICDETECTOR)
{
name = "Dynamic";
detectorType -= DYNAMICDETECTOR;
}
if (detectorType > PYRAMIDDETECTOR)
{
name = "Pyramid";
detectorType -= PYRAMIDDETECTOR;
}
if (detectorType > GRIDDETECTOR)
{
name = "Grid";
detectorType -= GRIDDETECTOR;
}
switch(detectorType)
{
case FAST:
name += "FAST";
break;
case STAR:
name += "STAR";
break;
case SIFT:
name += "SIFT";
break;
case SURF:
name += "SURF";
break;
case ORB:
name += "ORB";
break;
case MSER:
name += "MSER";
break;
case GFTT:
name += "GFTT";
break;
case HARRIS:
name += "HARRIS";
break;
case SIMPLEBLOB:
name += "SimpleBlob";
break;
case DENSE:
name += "Dense";
break;
case BRISK:
name += "BRISK";
break;
default:
CV_Error( CV_StsBadArg, "Specified feature detector type is not supported." );
break;
}
Ptr<FeatureDetector> detector = FeatureDetector::create(name);
detector.addref();
return (javaFeatureDetector*)((FeatureDetector*) detector);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((FeatureDetector*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((FeatureDetector*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher : public DescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual bool isMaskSupported() const;
CV_WRAP virtual void add( const vector<Mat>& descriptors );
CV_WRAP const vector<Mat>& getTrainDescriptors() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool empty() const;
CV_WRAP virtual void train();
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
const vector<Mat>& masks=vector<Mat>() );
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP void radiusMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
#endif
enum
{
FLANNBASED = 1,
BRUTEFORCE = 2,
BRUTEFORCE_L1 = 3,
BRUTEFORCE_HAMMING = 4,
BRUTEFORCE_HAMMINGLUT = 5,
BRUTEFORCE_SL2 = 6
};
CV_WRAP_AS(clone) javaDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<DescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
}
//supported: FlannBased, BruteForce, BruteForce-L1, BruteForce-Hamming, BruteForce-HammingLUT
CV_WRAP static javaDescriptorMatcher* create( int matcherType )
{
string name;
switch(matcherType)
{
case FLANNBASED:
name = "FlannBased";
break;
case BRUTEFORCE:
name = "BruteForce";
break;
case BRUTEFORCE_L1:
name = "BruteForce-L1";
break;
case BRUTEFORCE_HAMMING:
name = "BruteForce-Hamming";
break;
case BRUTEFORCE_HAMMINGLUT:
name = "BruteForce-HammingLUT";
break;
case BRUTEFORCE_SL2:
name = "BruteForce-SL2";
break;
default:
CV_Error( CV_StsBadArg, "Specified descriptor matcher type is not supported." );
break;
}
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(name);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorMatcher*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorMatcher*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor : public DescriptorExtractor
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
CV_WRAP void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, CV_OUT vector<Mat>& descriptors ) const;
CV_WRAP virtual int descriptorSize() const;
CV_WRAP virtual int descriptorType() const;
CV_WRAP virtual bool empty() const;
#endif
enum
{
SIFT = 1,
SURF = 2,
ORB = 3,
BRIEF = 4,
BRISK = 5,
FREAK = 6,
OPPONENTEXTRACTOR = 1000,
OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT,
OPPONENT_SURF = OPPONENTEXTRACTOR + SURF,
OPPONENT_ORB = OPPONENTEXTRACTOR + ORB,
OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF,
OPPONENT_BRISK = OPPONENTEXTRACTOR + BRISK,
OPPONENT_FREAK = OPPONENTEXTRACTOR + FREAK
};
//supported SIFT, SURF, ORB, BRIEF, BRISK, FREAK, Opponent(XXXX)
//not supported: Calonder
CV_WRAP static javaDescriptorExtractor* create( int extractorType )
{
string name;
if (extractorType > OPPONENTEXTRACTOR)
{
name = "Opponent";
extractorType -= OPPONENTEXTRACTOR;
}
switch(extractorType)
{
case SIFT:
name += "SIFT";
break;
case SURF:
name += "SURF";
break;
case ORB:
name += "ORB";
break;
case BRIEF:
name += "BRIEF";
break;
case BRISK:
name += "BRISK";
break;
case FREAK:
name += "FREAK";
break;
default:
CV_Error( CV_StsBadArg, "Specified descriptor extractor type is not supported." );
break;
}
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create(name);
extractor.addref();
return (javaDescriptorExtractor*)((DescriptorExtractor*) extractor);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorExtractor*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorExtractor*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(GenericDescriptorMatcher) javaGenericDescriptorMatcher : public GenericDescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual void add( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints );
CV_WRAP const vector<Mat>& getTrainImages() const;
CV_WRAP const vector<vector<KeyPoint> >& getTrainKeypoints() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool isMaskSupported();
CV_WRAP virtual void train();
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT vector<KeyPoint>& queryKeypoints );
CV_WRAP void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_WRAP void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
CV_WRAP void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP virtual bool empty() const;
#endif
enum
{
ONEWAY = 1,
FERN = 2
};
CV_WRAP_AS(clone) javaGenericDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<GenericDescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
}
//supported: OneWay, Fern
//unsupported: Vector
CV_WRAP static javaGenericDescriptorMatcher* create( int matcherType )
{
string name;
switch(matcherType)
{
case ONEWAY:
name = "ONEWAY";
break;
case FERN:
name = "FERN";
break;
default:
CV_Error( CV_StsBadArg, "Specified generic descriptor matcher type is not supported." );
break;
}
Ptr<GenericDescriptorMatcher> matcher = GenericDescriptorMatcher::create(name);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((GenericDescriptorMatcher*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((GenericDescriptorMatcher*)this)->read(fs.root());
fs.release();
}
};
#if 0
//DO NOT REMOVE! The block is required for sources parser
enum
{
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
// Matches will be drawn on existing content of output image.
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
// orientation will be drawn.
};
// Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage,
const Scalar& color=Scalar::all(-1), int flags=0 );
// Draws matches of keypints from two images on output image.
CV_EXPORTS_W void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<DMatch>& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<char>& matchesMask=vector<char>(), int flags=0 );
CV_EXPORTS_AS(drawMatches2) void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<vector<DMatch> >& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=0);
#endif
} //cv
#endif // HAVE_OPENCV_FEATURES2D
#endif // __OPENCV_FEATURES_2D_MANUAL_HPP__
#ifndef __OPENCV_FEATURES_2D_MANUAL_HPP__
#define __OPENCV_FEATURES_2D_MANUAL_HPP__
#include "opencv2/opencv_modules.hpp"
#ifdef HAVE_OPENCV_FEATURES2D
#include "opencv2/features2d/features2d.hpp"
#undef SIMPLEBLOB // to solve conflict with wincrypt.h on windows
namespace cv
{
class CV_EXPORTS_AS(FeatureDetector) javaFeatureDetector : public FeatureDetector
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void detect( const Mat& image, CV_OUT vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const;
CV_WRAP void detect( const vector<Mat>& images, CV_OUT vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const;
CV_WRAP virtual bool empty() const;
#endif
enum
{
FAST = 1,
STAR = 2,
SIFT = 3,
SURF = 4,
ORB = 5,
MSER = 6,
GFTT = 7,
HARRIS = 8,
SIMPLEBLOB = 9,
DENSE = 10,
BRISK = 11,
GRIDDETECTOR = 1000,
GRIDRETECTOR = 1000,
GRID_FAST = GRIDDETECTOR + FAST,
GRID_STAR = GRIDDETECTOR + STAR,
GRID_SIFT = GRIDDETECTOR + SIFT,
GRID_SURF = GRIDDETECTOR + SURF,
GRID_ORB = GRIDDETECTOR + ORB,
GRID_MSER = GRIDDETECTOR + MSER,
GRID_GFTT = GRIDDETECTOR + GFTT,
GRID_HARRIS = GRIDDETECTOR + HARRIS,
GRID_SIMPLEBLOB = GRIDDETECTOR + SIMPLEBLOB,
GRID_DENSE = GRIDDETECTOR + DENSE,
GRID_BRISK = GRIDDETECTOR + BRISK,
PYRAMIDDETECTOR = 2000,
PYRAMID_FAST = PYRAMIDDETECTOR + FAST,
PYRAMID_STAR = PYRAMIDDETECTOR + STAR,
PYRAMID_SIFT = PYRAMIDDETECTOR + SIFT,
PYRAMID_SURF = PYRAMIDDETECTOR + SURF,
PYRAMID_ORB = PYRAMIDDETECTOR + ORB,
PYRAMID_MSER = PYRAMIDDETECTOR + MSER,
PYRAMID_GFTT = PYRAMIDDETECTOR + GFTT,
PYRAMID_HARRIS = PYRAMIDDETECTOR + HARRIS,
PYRAMID_SIMPLEBLOB = PYRAMIDDETECTOR + SIMPLEBLOB,
PYRAMID_DENSE = PYRAMIDDETECTOR + DENSE,
PYRAMID_BRISK = PYRAMIDDETECTOR + BRISK,
DYNAMICDETECTOR = 3000,
DYNAMIC_FAST = DYNAMICDETECTOR + FAST,
DYNAMIC_STAR = DYNAMICDETECTOR + STAR,
DYNAMIC_SIFT = DYNAMICDETECTOR + SIFT,
DYNAMIC_SURF = DYNAMICDETECTOR + SURF,
DYNAMIC_ORB = DYNAMICDETECTOR + ORB,
DYNAMIC_MSER = DYNAMICDETECTOR + MSER,
DYNAMIC_GFTT = DYNAMICDETECTOR + GFTT,
DYNAMIC_HARRIS = DYNAMICDETECTOR + HARRIS,
DYNAMIC_SIMPLEBLOB = DYNAMICDETECTOR + SIMPLEBLOB,
DYNAMIC_DENSE = DYNAMICDETECTOR + DENSE,
DYNAMIC_BRISK = DYNAMICDETECTOR + BRISK
};
//supported: FAST STAR SIFT SURF ORB MSER GFTT HARRIS BRISK Grid(XXXX) Pyramid(XXXX) Dynamic(XXXX)
//not supported: SimpleBlob, Dense
CV_WRAP static javaFeatureDetector* create( int detectorType )
{
string name;
if (detectorType > DYNAMICDETECTOR)
{
name = "Dynamic";
detectorType -= DYNAMICDETECTOR;
}
if (detectorType > PYRAMIDDETECTOR)
{
name = "Pyramid";
detectorType -= PYRAMIDDETECTOR;
}
if (detectorType > GRIDDETECTOR)
{
name = "Grid";
detectorType -= GRIDDETECTOR;
}
switch(detectorType)
{
case FAST:
name += "FAST";
break;
case STAR:
name += "STAR";
break;
case SIFT:
name += "SIFT";
break;
case SURF:
name += "SURF";
break;
case ORB:
name += "ORB";
break;
case MSER:
name += "MSER";
break;
case GFTT:
name += "GFTT";
break;
case HARRIS:
name += "HARRIS";
break;
case SIMPLEBLOB:
name += "SimpleBlob";
break;
case DENSE:
name += "Dense";
break;
case BRISK:
name += "BRISK";
break;
default:
CV_Error( CV_StsBadArg, "Specified feature detector type is not supported." );
break;
}
Ptr<FeatureDetector> detector = FeatureDetector::create(name);
detector.addref();
return (javaFeatureDetector*)((FeatureDetector*) detector);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((FeatureDetector*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((FeatureDetector*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(DescriptorMatcher) javaDescriptorMatcher : public DescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual bool isMaskSupported() const;
CV_WRAP virtual void add( const vector<Mat>& descriptors );
CV_WRAP const vector<Mat>& getTrainDescriptors() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool empty() const;
CV_WRAP virtual void train();
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT vector<DMatch>& matches,
const vector<Mat>& masks=vector<Mat>() );
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP void radiusMatch( const Mat& queryDescriptors, CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
#endif
enum
{
FLANNBASED = 1,
BRUTEFORCE = 2,
BRUTEFORCE_L1 = 3,
BRUTEFORCE_HAMMING = 4,
BRUTEFORCE_HAMMINGLUT = 5,
BRUTEFORCE_SL2 = 6
};
CV_WRAP_AS(clone) javaDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<DescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
}
//supported: FlannBased, BruteForce, BruteForce-L1, BruteForce-Hamming, BruteForce-HammingLUT
CV_WRAP static javaDescriptorMatcher* create( int matcherType )
{
string name;
switch(matcherType)
{
case FLANNBASED:
name = "FlannBased";
break;
case BRUTEFORCE:
name = "BruteForce";
break;
case BRUTEFORCE_L1:
name = "BruteForce-L1";
break;
case BRUTEFORCE_HAMMING:
name = "BruteForce-Hamming";
break;
case BRUTEFORCE_HAMMINGLUT:
name = "BruteForce-HammingLUT";
break;
case BRUTEFORCE_SL2:
name = "BruteForce-SL2";
break;
default:
CV_Error( CV_StsBadArg, "Specified descriptor matcher type is not supported." );
break;
}
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create(name);
matcher.addref();
return (javaDescriptorMatcher*)((DescriptorMatcher*) matcher);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorMatcher*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorMatcher*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(DescriptorExtractor) javaDescriptorExtractor : public DescriptorExtractor
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP void compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& descriptors ) const;
CV_WRAP void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, CV_OUT vector<Mat>& descriptors ) const;
CV_WRAP virtual int descriptorSize() const;
CV_WRAP virtual int descriptorType() const;
CV_WRAP virtual bool empty() const;
#endif
enum
{
SIFT = 1,
SURF = 2,
ORB = 3,
BRIEF = 4,
BRISK = 5,
FREAK = 6,
OPPONENTEXTRACTOR = 1000,
OPPONENT_SIFT = OPPONENTEXTRACTOR + SIFT,
OPPONENT_SURF = OPPONENTEXTRACTOR + SURF,
OPPONENT_ORB = OPPONENTEXTRACTOR + ORB,
OPPONENT_BRIEF = OPPONENTEXTRACTOR + BRIEF,
OPPONENT_BRISK = OPPONENTEXTRACTOR + BRISK,
OPPONENT_FREAK = OPPONENTEXTRACTOR + FREAK
};
//supported SIFT, SURF, ORB, BRIEF, BRISK, FREAK, Opponent(XXXX)
//not supported: Calonder
CV_WRAP static javaDescriptorExtractor* create( int extractorType )
{
string name;
if (extractorType > OPPONENTEXTRACTOR)
{
name = "Opponent";
extractorType -= OPPONENTEXTRACTOR;
}
switch(extractorType)
{
case SIFT:
name += "SIFT";
break;
case SURF:
name += "SURF";
break;
case ORB:
name += "ORB";
break;
case BRIEF:
name += "BRIEF";
break;
case BRISK:
name += "BRISK";
break;
case FREAK:
name += "FREAK";
break;
default:
CV_Error( CV_StsBadArg, "Specified descriptor extractor type is not supported." );
break;
}
Ptr<DescriptorExtractor> extractor = DescriptorExtractor::create(name);
extractor.addref();
return (javaDescriptorExtractor*)((DescriptorExtractor*) extractor);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((DescriptorExtractor*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((DescriptorExtractor*)this)->read(fs.root());
fs.release();
}
};
class CV_EXPORTS_AS(GenericDescriptorMatcher) javaGenericDescriptorMatcher : public GenericDescriptorMatcher
{
public:
#if 0
//DO NOT REMOVE! The block is required for sources parser
CV_WRAP virtual void add( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints );
CV_WRAP const vector<Mat>& getTrainImages() const;
CV_WRAP const vector<vector<KeyPoint> >& getTrainKeypoints() const;
CV_WRAP virtual void clear();
CV_WRAP virtual bool isMaskSupported();
CV_WRAP virtual void train();
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints ) const;
CV_WRAP void classify( const Mat& queryImage, CV_IN_OUT vector<KeyPoint>& queryKeypoints );
CV_WRAP void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<DMatch>& matches, const Mat& mask=Mat() ) const;
CV_WRAP void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<vector<DMatch> >& matches, int k,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const Mat& mask=Mat(), bool compactResult=false ) const;
CV_WRAP void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
CV_WRAP void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<vector<DMatch> >& matches, int k,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
CV_OUT vector<vector<DMatch> >& matches, float maxDistance,
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
CV_WRAP virtual bool empty() const;
#endif
enum
{
ONEWAY = 1,
FERN = 2
};
CV_WRAP_AS(clone) javaGenericDescriptorMatcher* jclone( bool emptyTrainData=false ) const
{
Ptr<GenericDescriptorMatcher> matcher = this->clone(emptyTrainData);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
}
//supported: OneWay, Fern
//unsupported: Vector
CV_WRAP static javaGenericDescriptorMatcher* create( int matcherType )
{
string name;
switch(matcherType)
{
case ONEWAY:
name = "ONEWAY";
break;
case FERN:
name = "FERN";
break;
default:
CV_Error( CV_StsBadArg, "Specified generic descriptor matcher type is not supported." );
break;
}
Ptr<GenericDescriptorMatcher> matcher = GenericDescriptorMatcher::create(name);
matcher.addref();
return (javaGenericDescriptorMatcher*)((GenericDescriptorMatcher*) matcher);
}
CV_WRAP void write( const string& fileName ) const
{
FileStorage fs(fileName, FileStorage::WRITE);
((GenericDescriptorMatcher*)this)->write(fs);
fs.release();
}
CV_WRAP void read( const string& fileName )
{
FileStorage fs(fileName, FileStorage::READ);
((GenericDescriptorMatcher*)this)->read(fs.root());
fs.release();
}
};
#if 0
//DO NOT REMOVE! The block is required for sources parser
enum
{
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be created (Mat::create).
// Matches will be drawn on existing content of output image.
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around keypoint with keypoint size and
// orientation will be drawn.
};
// Draw keypoints.
CV_EXPORTS_W void drawKeypoints( const Mat& image, const vector<KeyPoint>& keypoints, Mat& outImage,
const Scalar& color=Scalar::all(-1), int flags=0 );
// Draws matches of keypints from two images on output image.
CV_EXPORTS_W void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<DMatch>& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<char>& matchesMask=vector<char>(), int flags=0 );
CV_EXPORTS_AS(drawMatches2) void drawMatches( const Mat& img1, const vector<KeyPoint>& keypoints1,
const Mat& img2, const vector<KeyPoint>& keypoints2,
const vector<vector<DMatch> >& matches1to2, Mat& outImg,
const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
const vector<vector<char> >& matchesMask=vector<vector<char> >(), int flags=0);
#endif
} //cv
#endif // HAVE_OPENCV_FEATURES2D
#endif // __OPENCV_FEATURES_2D_MANUAL_HPP__

View File

@@ -1,171 +1,171 @@
#include <jni.h>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#ifdef ANDROID
#include <android/bitmap.h>
#include <android/log.h>
#define LOG_TAG "org.opencv.android.Utils"
#define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
#ifdef DEBUG
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#else //!DEBUG
#define LOGD(...)
#endif //DEBUG
using namespace cv;
extern "C" {
/*
* Class: org_opencv_android_Utils
* Method: void nBitmapToMat2(Bitmap b, long m_addr, boolean unPremultiplyAlpha)
*/
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat2
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr, jboolean needUnPremultiplyAlpha);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat2
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr, jboolean needUnPremultiplyAlpha)
{
AndroidBitmapInfo info;
void* pixels = 0;
Mat& dst = *((Mat*)m_addr);
try {
LOGD("nBitmapToMat");
CV_Assert( AndroidBitmap_getInfo(env, bitmap, &info) >= 0 );
CV_Assert( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565 );
CV_Assert( AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0 );
CV_Assert( pixels );
dst.create(info.height, info.width, CV_8UC4);
if( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 )
{
LOGD("nBitmapToMat: RGBA_8888 -> CV_8UC4");
Mat tmp(info.height, info.width, CV_8UC4, pixels);
if(needUnPremultiplyAlpha) cvtColor(tmp, dst, COLOR_mRGBA2RGBA);
else tmp.copyTo(dst);
} else {
// info.format == ANDROID_BITMAP_FORMAT_RGB_565
LOGD("nBitmapToMat: RGB_565 -> CV_8UC4");
Mat tmp(info.height, info.width, CV_8UC2, pixels);
cvtColor(tmp, dst, CV_BGR5652RGBA);
}
AndroidBitmap_unlockPixels(env, bitmap);
return;
} catch(cv::Exception e) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nBitmapToMat catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return;
} catch (...) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nBitmapToMat catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {nBitmapToMat}");
return;
}
}
// old signature is left for binary compatibility with 2.4.0 & 2.4.1, to removed in 2.5
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr)
{
Java_org_opencv_android_Utils_nBitmapToMat2(env, 0, bitmap, m_addr, false);
}
/*
* Class: org_opencv_android_Utils
* Method: void nMatToBitmap2(long m_addr, Bitmap b, boolean premultiplyAlpha)
*/
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap2
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap, jboolean needPremultiplyAlpha);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap2
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap, jboolean needPremultiplyAlpha)
{
AndroidBitmapInfo info;
void* pixels = 0;
Mat& src = *((Mat*)m_addr);
try {
LOGD("nMatToBitmap");
CV_Assert( AndroidBitmap_getInfo(env, bitmap, &info) >= 0 );
CV_Assert( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565 );
CV_Assert( src.dims == 2 && info.height == (uint32_t)src.rows && info.width == (uint32_t)src.cols );
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4 );
CV_Assert( AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0 );
CV_Assert( pixels );
if( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 )
{
Mat tmp(info.height, info.width, CV_8UC4, pixels);
if(src.type() == CV_8UC1)
{
LOGD("nMatToBitmap: CV_8UC1 -> RGBA_8888");
cvtColor(src, tmp, CV_GRAY2RGBA);
} else if(src.type() == CV_8UC3){
LOGD("nMatToBitmap: CV_8UC3 -> RGBA_8888");
cvtColor(src, tmp, CV_RGB2RGBA);
} else if(src.type() == CV_8UC4){
LOGD("nMatToBitmap: CV_8UC4 -> RGBA_8888");
if(needPremultiplyAlpha) cvtColor(src, tmp, COLOR_RGBA2mRGBA);
else src.copyTo(tmp);
}
} else {
// info.format == ANDROID_BITMAP_FORMAT_RGB_565
Mat tmp(info.height, info.width, CV_8UC2, pixels);
if(src.type() == CV_8UC1)
{
LOGD("nMatToBitmap: CV_8UC1 -> RGB_565");
cvtColor(src, tmp, CV_GRAY2BGR565);
} else if(src.type() == CV_8UC3){
LOGD("nMatToBitmap: CV_8UC3 -> RGB_565");
cvtColor(src, tmp, CV_RGB2BGR565);
} else if(src.type() == CV_8UC4){
LOGD("nMatToBitmap: CV_8UC4 -> RGB_565");
cvtColor(src, tmp, CV_RGBA2BGR565);
}
}
AndroidBitmap_unlockPixels(env, bitmap);
return;
} catch(cv::Exception e) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nMatToBitmap catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return;
} catch (...) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nMatToBitmap catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {nMatToBitmap}");
return;
}
}
// old signature is left for binary compatibility with 2.4.0 & 2.4.1, to removed in 2.5
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap)
{
Java_org_opencv_android_Utils_nMatToBitmap2(env, 0, m_addr, bitmap, false);
}
} // extern "C"
#include <jni.h>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#ifdef ANDROID
#include <android/bitmap.h>
#include <android/log.h>
#define LOG_TAG "org.opencv.android.Utils"
#define LOGE(...) ((void)__android_log_print(ANDROID_LOG_ERROR, LOG_TAG, __VA_ARGS__))
#ifdef DEBUG
#define LOGD(...) ((void)__android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__))
#else //!DEBUG
#define LOGD(...)
#endif //DEBUG
using namespace cv;
extern "C" {
/*
* Class: org_opencv_android_Utils
* Method: void nBitmapToMat2(Bitmap b, long m_addr, boolean unPremultiplyAlpha)
*/
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat2
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr, jboolean needUnPremultiplyAlpha);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat2
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr, jboolean needUnPremultiplyAlpha)
{
AndroidBitmapInfo info;
void* pixels = 0;
Mat& dst = *((Mat*)m_addr);
try {
LOGD("nBitmapToMat");
CV_Assert( AndroidBitmap_getInfo(env, bitmap, &info) >= 0 );
CV_Assert( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565 );
CV_Assert( AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0 );
CV_Assert( pixels );
dst.create(info.height, info.width, CV_8UC4);
if( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 )
{
LOGD("nBitmapToMat: RGBA_8888 -> CV_8UC4");
Mat tmp(info.height, info.width, CV_8UC4, pixels);
if(needUnPremultiplyAlpha) cvtColor(tmp, dst, COLOR_mRGBA2RGBA);
else tmp.copyTo(dst);
} else {
// info.format == ANDROID_BITMAP_FORMAT_RGB_565
LOGD("nBitmapToMat: RGB_565 -> CV_8UC4");
Mat tmp(info.height, info.width, CV_8UC2, pixels);
cvtColor(tmp, dst, CV_BGR5652RGBA);
}
AndroidBitmap_unlockPixels(env, bitmap);
return;
} catch(cv::Exception e) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nBitmapToMat catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return;
} catch (...) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nBitmapToMat catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {nBitmapToMat}");
return;
}
}
// old signature is left for binary compatibility with 2.4.0 & 2.4.1, to removed in 2.5
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nBitmapToMat
(JNIEnv * env, jclass, jobject bitmap, jlong m_addr)
{
Java_org_opencv_android_Utils_nBitmapToMat2(env, 0, bitmap, m_addr, false);
}
/*
* Class: org_opencv_android_Utils
* Method: void nMatToBitmap2(long m_addr, Bitmap b, boolean premultiplyAlpha)
*/
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap2
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap, jboolean needPremultiplyAlpha);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap2
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap, jboolean needPremultiplyAlpha)
{
AndroidBitmapInfo info;
void* pixels = 0;
Mat& src = *((Mat*)m_addr);
try {
LOGD("nMatToBitmap");
CV_Assert( AndroidBitmap_getInfo(env, bitmap, &info) >= 0 );
CV_Assert( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 ||
info.format == ANDROID_BITMAP_FORMAT_RGB_565 );
CV_Assert( src.dims == 2 && info.height == (uint32_t)src.rows && info.width == (uint32_t)src.cols );
CV_Assert( src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4 );
CV_Assert( AndroidBitmap_lockPixels(env, bitmap, &pixels) >= 0 );
CV_Assert( pixels );
if( info.format == ANDROID_BITMAP_FORMAT_RGBA_8888 )
{
Mat tmp(info.height, info.width, CV_8UC4, pixels);
if(src.type() == CV_8UC1)
{
LOGD("nMatToBitmap: CV_8UC1 -> RGBA_8888");
cvtColor(src, tmp, CV_GRAY2RGBA);
} else if(src.type() == CV_8UC3){
LOGD("nMatToBitmap: CV_8UC3 -> RGBA_8888");
cvtColor(src, tmp, CV_RGB2RGBA);
} else if(src.type() == CV_8UC4){
LOGD("nMatToBitmap: CV_8UC4 -> RGBA_8888");
if(needPremultiplyAlpha) cvtColor(src, tmp, COLOR_RGBA2mRGBA);
else src.copyTo(tmp);
}
} else {
// info.format == ANDROID_BITMAP_FORMAT_RGB_565
Mat tmp(info.height, info.width, CV_8UC2, pixels);
if(src.type() == CV_8UC1)
{
LOGD("nMatToBitmap: CV_8UC1 -> RGB_565");
cvtColor(src, tmp, CV_GRAY2BGR565);
} else if(src.type() == CV_8UC3){
LOGD("nMatToBitmap: CV_8UC3 -> RGB_565");
cvtColor(src, tmp, CV_RGB2BGR565);
} else if(src.type() == CV_8UC4){
LOGD("nMatToBitmap: CV_8UC4 -> RGB_565");
cvtColor(src, tmp, CV_RGBA2BGR565);
}
}
AndroidBitmap_unlockPixels(env, bitmap);
return;
} catch(cv::Exception e) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nMatToBitmap catched cv::Exception: %s", e.what());
jclass je = env->FindClass("org/opencv/core/CvException");
if(!je) je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, e.what());
return;
} catch (...) {
AndroidBitmap_unlockPixels(env, bitmap);
LOGE("nMatToBitmap catched unknown exception (...)");
jclass je = env->FindClass("java/lang/Exception");
env->ThrowNew(je, "Unknown exception in JNI code {nMatToBitmap}");
return;
}
}
// old signature is left for binary compatibility with 2.4.0 & 2.4.1, to removed in 2.5
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap);
JNIEXPORT void JNICALL Java_org_opencv_android_Utils_nMatToBitmap
(JNIEnv * env, jclass, jlong m_addr, jobject bitmap)
{
Java_org_opencv_android_Utils_nMatToBitmap2(env, 0, m_addr, bitmap, false);
}
} // extern "C"
#endif //ANDROID