Normalize line endings and whitespace

This commit is contained in:
OpenCV Buildbot
2012-10-17 03:18:30 +04:00
committed by Andrey Kamaev
parent 69020da607
commit 04384a71e4
1516 changed files with 258846 additions and 258162 deletions

View File

@@ -56,26 +56,26 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
int depth = img.depth(), cn = img.channels();
int tdepth = templ.depth(), tcn = templ.channels();
int cdepth = CV_MAT_DEPTH(ctype), ccn = CV_MAT_CN(ctype);
CV_Assert( img.dims <= 2 && templ.dims <= 2 && corr.dims <= 2 );
if( depth != tdepth && tdepth != std::max(CV_32F, depth) )
{
_templ.convertTo(templ, std::max(CV_32F, depth));
tdepth = templ.depth();
}
CV_Assert( depth == tdepth || tdepth == CV_32F);
CV_Assert( corrsize.height <= img.rows + templ.rows - 1 &&
corrsize.width <= img.cols + templ.cols - 1 );
CV_Assert( ccn == 1 || delta == 0 );
corr.create(corrsize, ctype);
int maxDepth = depth > CV_8S ? CV_64F : std::max(std::max(CV_32F, tdepth), cdepth);
Size blocksize, dftsize;
blocksize.width = cvRound(templ.cols*blockScale);
blocksize.width = std::max( blocksize.width, minBlockSize - templ.cols + 1 );
blocksize.width = std::min( blocksize.width, corr.cols );
@@ -109,7 +109,7 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
bufSize = std::max( bufSize, blocksize.width*blocksize.height*CV_ELEM_SIZE(cdepth));
buf.resize(bufSize);
// compute DFT of each template plane
for( k = 0; k < tcn; k++ )
{
@@ -139,11 +139,11 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
int tileCountX = (corr.cols + blocksize.width - 1)/blocksize.width;
int tileCountY = (corr.rows + blocksize.height - 1)/blocksize.height;
int tileCount = tileCountX * tileCountY;
Size wholeSize = img.size();
Point roiofs(0,0);
Mat img0 = img;
if( !(borderType & BORDER_ISOLATED) )
{
img.locateROI(wholeSize, roiofs);
@@ -151,13 +151,13 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
roiofs.x, wholeSize.width-img.cols-roiofs.x);
}
borderType |= BORDER_ISOLATED;
// calculate correlation by blocks
for( i = 0; i < tileCount; i++ )
{
int x = (i%tileCountX)*blocksize.width;
int y = (i/tileCountX)*blocksize.height;
Size bsz(std::min(blocksize.width, corr.cols - x),
std::min(blocksize.height, corr.rows - y));
Size dsz(bsz.width + templ.cols - 1, bsz.height + templ.rows - 1);
@@ -169,12 +169,12 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
Mat dst(dftImg, Rect(0, 0, dsz.width, dsz.height));
Mat dst1(dftImg, Rect(x1-x0, y1-y0, x2-x1, y2-y1));
Mat cdst(corr, Rect(x, y, bsz.width, bsz.height));
for( k = 0; k < cn; k++ )
{
Mat src = src0;
dftImg = Scalar::all(0);
if( cn > 1 )
{
src = depth == maxDepth ? dst1 : Mat(y2-y1, x2-x1, depth, &buf[0]);
@@ -206,7 +206,7 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
src = plane;
}
int pairs[] = {0, k};
mixChannels(&src, 1, &cdst, 1, pairs, 1);
mixChannels(&src, 1, &cdst, 1, pairs, 1);
}
else
{
@@ -234,7 +234,7 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result, int method )
{
CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
bool isNormed = method == CV_TM_CCORR_NORMED ||
@@ -244,14 +244,14 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
Mat img = _img.getMat(), templ = _templ.getMat();
if( img.rows < templ.rows || img.cols < templ.cols )
std::swap(img, templ);
CV_Assert( (img.depth() == CV_8U || img.depth() == CV_32F) &&
img.type() == templ.type() );
Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
_result.create(corrSize, CV_32F);
Mat result = _result.getMat();
int cn = img.channels();
crossCorr( img, templ, result, result.size(), result.type(), Point(0,0), 0, 0);
@@ -264,7 +264,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
Scalar templMean, templSdv;
double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
double templNorm = 0, templSum2 = 0;
if( method == CV_TM_CCOEFF )
{
integral(img, sum, CV_64F);
@@ -283,7 +283,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
result = Scalar::all(1);
return;
}
templSum2 = templNorm +
CV_SQR(templMean[0]) + CV_SQR(templMean[1]) +
CV_SQR(templMean[2]) + CV_SQR(templMean[3]);
@@ -293,7 +293,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
templMean = Scalar::all(0);
templNorm = templSum2;
}
templSum2 /= invArea;
templNorm = sqrt(templNorm);
templNorm /= sqrt(invArea); // care of accuracy here
@@ -313,7 +313,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
int sqstep = sqsum.data ? (int)(sqsum.step / sizeof(double)) : 0;
int i, j, k;
for( i = 0; i < result.rows; i++ )
{
float* rrow = (float*)(result.data + i*result.step);
@@ -324,7 +324,7 @@ void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result,
{
double num = rrow[j], t;
double wndMean2 = 0, wndSum2 = 0;
if( numType == 1 )
{
for( k = 0; k < cn; k++ )