Enabled precalculated wave

This commit is contained in:
Alexander Karsakov 2014-07-10 18:10:46 +04:00
parent 5dd9263848
commit 0318d27720
5 changed files with 187 additions and 187 deletions

View File

@ -244,6 +244,7 @@ typedef signed char schar;
/* fundamental constants */ /* fundamental constants */
#define CV_PI 3.1415926535897932384626433832795 #define CV_PI 3.1415926535897932384626433832795
#define CV_TWO_PI 6.283185307179586476925286766559
#define CV_LOG2 0.69314718055994530941723212145818 #define CV_LOG2 0.69314718055994530941723212145818
/****************************************************************************************\ /****************************************************************************************\

View File

@ -57,8 +57,8 @@ namespace ocl {
typedef tuple<Size, int> DftParams; typedef tuple<Size, int> DftParams;
typedef TestBaseWithParam<DftParams> DftFixture; typedef TestBaseWithParam<DftParams> DftFixture;
OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(/*OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3, */Size(1024, 1024), Size(1024, 2048), Size(512, 512), Size(2048, 2048)), OCL_PERF_TEST_P(DftFixture, Dft, ::testing::Combine(Values(OCL_SIZE_1, OCL_SIZE_2, OCL_SIZE_3, Size(1024, 1024), Size(1024, 2048), Size(512, 512), Size(2048, 2048)),
Values((int)DFT_ROWS/*, (int) 0/*, (int)DFT_SCALE, (int)DFT_INVERSE, Values((int)DFT_ROWS, (int) 0/*, (int)DFT_SCALE, (int)DFT_INVERSE,
(int)DFT_INVERSE | DFT_SCALE, (int)DFT_ROWS | DFT_INVERSE*/))) (int)DFT_INVERSE | DFT_SCALE, (int)DFT_ROWS | DFT_INVERSE*/)))
{ {
const DftParams params = GetParam(); const DftParams params = GetParam();

View File

@ -2034,26 +2034,6 @@ namespace cv
#ifdef HAVE_OPENCL #ifdef HAVE_OPENCL
static bool fft_radixN(InputArray _src, OutputArray _dst, int radix, int block_size, int nonzero_rows, int flags)
{
int N = _src.size().width;
if (N % radix)
return false;
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
int thread_count = N / radix;
size_t globalsize[2] = { thread_count, nonzero_rows };
String kernel_name = format("fft_radix%d", radix);
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, (flags & DFT_INVERSE) != 0 ? "-D INVERSE" : "");
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), block_size, thread_count, nonzero_rows);
return k.run(2, globalsize, NULL, false);
}
static bool ocl_packToCCS(InputArray _buffer, OutputArray _dst, int flags) static bool ocl_packToCCS(InputArray _buffer, OutputArray _dst, int flags)
{ {
UMat buffer = _buffer.getUMat(); UMat buffer = _buffer.getUMat();
@ -2098,24 +2078,18 @@ static bool ocl_packToCCS(InputArray _buffer, OutputArray _dst, int flags)
return true; return true;
} }
static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows, int flags) static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
{ {
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
UMat src = _src.getUMat();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int factors[34]; int factors[34];
int nf = DFTFactorize( src.cols, factors ); int nf = DFTFactorize( cols, factors );
int n = 1; int n = 1;
int factor_index = 0; int factor_index = 0;
String radix_processing; // choose radix order
int min_radix = INT_MAX; std::vector<int> radixes;
// 1. 2^n transforms
// 2^n transforms
if ( (factors[factor_index] & 1) == 0 ) if ( (factors[factor_index] & 1) == 0 )
{ {
for( ; n < factors[factor_index]; ) for( ; n < factors[factor_index]; )
@ -2126,22 +2100,74 @@ static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows,
else if (4*n <= factors[0]) else if (4*n <= factors[0])
radix = 4; radix = 4;
radix_processing += format("fft_radix%d(smem,x,%d,%d);", radix, n, src.cols/radix); radixes.push_back(radix);
min_radix = min(radix, min_radix); min_radix = min(min_radix, radix);
n *= radix; n *= radix;
} }
factor_index++; factor_index++;
} }
// 2. all the other transforms // all the other transforms
for( ; factor_index < nf; factor_index++ ) for( ; factor_index < nf; factor_index++ )
{ {
int radix = factors[factor_index]; radixes.push_back(factors[factor_index]);
radix_processing += format("fft_radix%d(smem,x,%d,%d);", radix, n, src.cols/radix); min_radix = min(min_radix, factors[factor_index]);
min_radix = min(radix, min_radix); }
return radixes;
}
static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, InputOutputArray _twiddles, int nonzero_rows, int flags)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
UMat src = _src.getUMat();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int min_radix = INT_MAX;
std::vector<int> radixes = ocl_getRadixes(src.cols, min_radix);
// generate string with radix calls
String radix_processing;
int n = 1, twiddle_index = 0;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
radix_processing += format("fft_radix%d(smem,twiddles+%d,x,%d,%d);", radix, twiddle_index, n, src.cols/radix);
twiddle_index += (radix-1)*n;
n *= radix; n *= radix;
} }
UMat twiddles = _twiddles.getUMat();
if (twiddles.cols != twiddle_index)
{
// need to create/update tweedle table
int buffer_size = twiddle_index;
twiddles.create(1, buffer_size, CV_32FC2);
Mat tw = twiddles.getMat(ACCESS_WRITE);
float* ptr = tw.ptr<float>();
int ptr_index = 0;
int n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int k=0; k<(n/radix); k++)
{
double theta = -CV_TWO_PI*k/n;
for (int j=1; j<radix; j++)
{
ptr[ptr_index++] = cos(j*theta);
ptr[ptr_index++] = sin(j*theta);
}
}
}
}
//Mat buf = twiddles.getMat(ACCESS_READ);
UMat dst = _dst.getUMat(); UMat dst = _dst.getUMat();
int thread_count = src.cols / min_radix; int thread_count = src.cols / min_radix;
@ -2154,7 +2180,7 @@ static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows,
if (k.empty()) if (k.empty())
return false; return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), thread_count, nonzero_rows); k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, nonzero_rows);
return k.run(2, globalsize, localsize, false); return k.run(2, globalsize, localsize, false);
} }
@ -2232,25 +2258,26 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() ) if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows(); nonzero_rows = _src.rows();
UMat buffer;
if (!ocl_dft_C2C_row(src, dst, nonzero_rows, flags)) if (!ocl_dft_C2C_row(src, dst, buffer, nonzero_rows, flags))
return false; return false;
if ((flags & DFT_ROWS) == 0 && nonzero_rows > 1) if ((flags & DFT_ROWS) == 0 && nonzero_rows > 1)
{ {
transpose(dst, dst); transpose(dst, dst);
if (!ocl_dft_C2C_row(dst, dst, dst.rows, flags)) if (!ocl_dft_C2C_row(dst, dst, buffer, dst.rows, flags))
return false; return false;
transpose(dst, dst); transpose(dst, dst);
} }
//if (complex_output) if (complex_output)
//{ {
// if (real_input && is1d) if (real_input && is1d)
// _dst.assign(buffer.colRange(0, buffer.cols/2+1)); _dst.assign(dst.colRange(0, dst.cols/2+1));
// else else
// _dst.assign(buffer); _dst.assign(dst);
//} }
//else //else
//{ //{
// if (!inv) // if (!inv)

View File

@ -7,55 +7,36 @@ __constant float fft5_3 = -0.951056516295f;
__constant float fft5_4 = -1.538841768587f; __constant float fft5_4 = -1.538841768587f;
__constant float fft5_5 = 0.363271264002f; __constant float fft5_5 = 0.363271264002f;
inline float2 mul_float2(float2 a, float2 b){ __attribute__((always_inline))
float2 mul_float2(float2 a, float2 b){
float2 res; float2 res;
res.x = a.x * b.x - a.y * b.y; res.x = a.x * b.x - a.y * b.y;
res.y = a.x * b.y + a.y * b.x; res.y = a.x * b.y + a.y * b.x;
return res; return res;
} }
inline float2 sincos_float2(float alpha) { __attribute__((always_inline))
float2 sincos_float2(float alpha) {
float cs, sn; float cs, sn;
sn = sincos(alpha, &cs); // sincos sn = sincos(alpha, &cs); // sincos
return (float2)(cs, sn); return (float2)(cs, sn);
} }
inline float2 twiddle(float2 a) { __attribute__((always_inline))
float2 twiddle(float2 a) {
return (float2)(a.y, -a.x); return (float2)(a.y, -a.x);
} }
inline float2 square(float2 a) {
return (float2)(a.x * a.x - a.y * a.y, 2.0f * a.x * a.y);
}
inline float2 square3(float2 a) {
return (float2)(a.x * a.x - a.y * a.y, 3.0f * a.x * a.y);
}
inline float2 mul_p1q4(float2 a) {
return (float2)(SQRT_2) * (float2)(a.x + a.y, -a.x + a.y);
}
inline float2 mul_p3q4(float2 a) {
return (float2)(SQRT_2) * (float2)(-a.x + a.y, -a.x - a.y);
}
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix2(__local float2* smem, const int x, const int block_size, const int t) void fft_radix2(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x & (block_size - 1); const int k = x & (block_size - 1);
float2 in1, temp; float2 a0, a1;
if (x < t) if (x < t)
{ {
in1 = smem[x]; a0 = smem[x];
float2 in2 = smem[x+t]; a1 = mul_float2(twiddles[k],smem[x+t]);
float theta = -PI * k / block_size;
float cs;
float sn = sincos(theta, &cs);
temp = (float2) (in2.x * cs - in2.y * sn,
in2.y * cs + in2.x * sn);
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -64,36 +45,25 @@ void fft_radix2(__local float2* smem, const int x, const int block_size, const i
{ {
const int dst_ind = (x << 1) - k; const int dst_ind = (x << 1) - k;
smem[dst_ind] = in1 + temp; smem[dst_ind] = a0 + a1;
smem[dst_ind+block_size] = in1 - temp; smem[dst_ind+block_size] = a0 - a1;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix4(__local float2* smem, const int x, const int block_size, const int t) void fft_radix4(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x & (block_size - 1); const int k = x & (block_size - 1);
float2 b0, b1, b2, b3; float2 a0, a1, a2, a3;
if (x < t) if (x < t)
{ {
float theta = -PI * k / (2 * block_size); a0 = smem[x];
a1 = mul_float2(twiddles[3*k],smem[x+t]);
float2 tw = sincos_float2(theta); a2 = mul_float2(twiddles[3*k + 1],smem[x+2*t]);
float2 a0 = smem[x]; a3 = mul_float2(twiddles[3*k + 2],smem[x+3*t]);
float2 a1 = mul_float2(tw, smem[x+t]);
float2 a2 = smem[x + 2*t];
float2 a3 = mul_float2(tw, smem[x + 3*t]);
tw = square(tw);
a2 = mul_float2(tw, a2);
a3 = mul_float2(tw, a3);
b0 = a0 + a2;
b1 = a0 - a2;
b2 = a1 + a3;
b3 = twiddle(a1 - a3);
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -101,63 +71,62 @@ void fft_radix4(__local float2* smem, const int x, const int block_size, const i
if (x < t) if (x < t)
{ {
const int dst_ind = ((x - k) << 2) + k; const int dst_ind = ((x - k) << 2) + k;
smem[dst_ind] = b0 + b2;
smem[dst_ind + block_size] = b1 + b3; float2 b0 = a0 + a2;
smem[dst_ind + 2*block_size] = b0 - b2; a2 = a0 - a2;
smem[dst_ind + 3*block_size] = b1 - b3; float2 b1 = a1 + a3;
a3 = twiddle(a1 - a3);
smem[dst_ind] = b0 + b1;
smem[dst_ind + block_size] = a2 + a3;
smem[dst_ind + 2*block_size] = b0 - b1;
smem[dst_ind + 3*block_size] = a2 - a3;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix8(__local float2* smem, const int x, const int block_size, const int t) void fft_radix8(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x % block_size; const int k = x % block_size;
float2 a0, a1, a2, a3, a4, a5, a6, a7; float2 a0, a1, a2, a3, a4, a5, a6, a7;
if (x < t) if (x < t)
{ {
float theta = -PI * k / (4 * block_size); int tw_ind = block_size / 8;
float2 tw = sincos_float2(theta); // W
a0 = smem[x]; a0 = smem[x];
a1 = mul_float2(tw, smem[x + t]); a1 = mul_float2(twiddles[7*k], smem[x + t]);
a2 = smem[x + 2 * t]; a2 = mul_float2(twiddles[7*k+1],smem[x+2*t]);
a3 = mul_float2(tw, smem[x + 3 * t]); a3 = mul_float2(twiddles[7*k+2],smem[x+3*t]);
a4 = smem[x + 4 * t]; a4 = mul_float2(twiddles[7*k+3],smem[x+4*t]);
a5 = mul_float2(tw, smem[x + 5 * t]); a5 = mul_float2(twiddles[7*k+4],smem[x+5*t]);
a6 = smem[x + 6 * t]; a6 = mul_float2(twiddles[7*k+5],smem[x+6*t]);
a7 = mul_float2(tw, smem[x + 7 * t]); a7 = mul_float2(twiddles[7*k+6],smem[x+7*t]);
tw = square(tw); // W^2 float2 b0, b1, b6, b7;
a2 = mul_float2(tw, a2);
a3 = mul_float2(tw, a3);
a6 = mul_float2(tw, a6);
a7 = mul_float2(tw, a7);
tw = square(tw); // W^4
a4 = mul_float2(tw, a4);
a5 = mul_float2(tw, a5);
a6 = mul_float2(tw, a6);
a7 = mul_float2(tw, a7);
float2 b0 = a0 + a4; b0 = a0 + a4;
float2 b4 = a0 - a4; a4 = a0 - a4;
float2 b1 = a1 + a5; b1 = a1 + a5;
float2 b5 = mul_p1q4(a1 - a5); a5 = a1 - a5;
float2 b2 = a2 + a6; a5 = (float2)(SQRT_2) * (float2)(a5.x + a5.y, -a5.x + a5.y);
float2 b6 = twiddle(a2 - a6); b6 = twiddle(a2 - a6);
float2 b3 = a3 + a7; a2 = a2 + a6;
float2 b7 = mul_p3q4(a3 - a7); b7 = a3 - a7;
b7 = (float2)(SQRT_2) * (float2)(-b7.x + b7.y, -b7.x - b7.y);
a3 = a3 + a7;
a0 = b0 + a2;
a2 = b0 - a2;
a1 = b1 + a3;
a3 = twiddle(b1 - a3);
a6 = a4 - b6;
a4 = a4 + b6;
a7 = twiddle(a5 - b7);
a5 = a5 + b7;
a0 = b0 + b2;
a2 = b0 - b2;
a1 = b1 + b3;
a3 = twiddle(b1 - b3);
a4 = b4 + b6;
a6 = b4 - b6;
a5 = b5 + b7;
a7 = twiddle(b5 - b7);
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -181,21 +150,16 @@ void fft_radix8(__local float2* smem, const int x, const int block_size, const i
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix3(__local float2* smem, const int x, const int block_size, const int t) void fft_radix3(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x % block_size; const int k = x % block_size;
float2 a0, a1, a2, b0, b1; float2 a0, a1, a2;
if (x < t) if (x < t)
{ {
const float theta = -PI * k * 2 / (3 * block_size);
a0 = smem[x]; a0 = smem[x];
a1 = mul_float2(sincos_float2(theta), smem[x+t]); a1 = mul_float2(twiddles[2*k], smem[x+t]);
a2 = mul_float2(sincos_float2(2 * theta), smem[x+2*t]); a2 = mul_float2(twiddles[2*k+1], smem[x+2*t]);
b1 = a1 + a2;
a2 = twiddle((float2)sin_120*(a1 - a2));
b0 = a0 - (float2)(0.5f)*b1;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -204,6 +168,10 @@ void fft_radix3(__local float2* smem, const int x, const int block_size, const i
{ {
const int dst_ind = ((x - k) * 3) + k; const int dst_ind = ((x - k) * 3) + k;
float2 b1 = a1 + a2;
a2 = twiddle((float2)sin_120*(a1 - a2));
float2 b0 = a0 - (float2)(0.5f)*b1;
smem[dst_ind] = a0 + b1; smem[dst_ind] = a0 + b1;
smem[dst_ind + block_size] = b0 + a2; smem[dst_ind + block_size] = b0 + a2;
smem[dst_ind + 2*block_size] = b0 - a2; smem[dst_ind + 2*block_size] = b0 - a2;
@ -213,41 +181,20 @@ void fft_radix3(__local float2* smem, const int x, const int block_size, const i
} }
__attribute__((always_inline)) __attribute__((always_inline))
void fft_radix5(__local float2* smem, const int x, const int block_size, const int t) void fft_radix5(__local float2* smem, __global const float2* twiddles, const int x, const int block_size, const int t)
{ {
const int k = x % block_size; const int k = x % block_size;
float2 a0, a1, a2, a3, a4, b0, b1, b2, b5; float2 a0, a1, a2, a3, a4;
if (x < t) if (x < t)
{ {
const float theta = -PI * k * 2 / (5 * block_size); int tw_ind = block_size / 5;
a0 = smem[x]; a0 = smem[x];
a1 = mul_float2(sincos_float2(theta), smem[x + t]); a1 = mul_float2(twiddles[4*k], smem[x + t]);
a2 = mul_float2(sincos_float2(theta*2),smem[x+2*t]); a2 = mul_float2(twiddles[4*k+1],smem[x+2*t]);
a3 = mul_float2(sincos_float2(theta*3),smem[x+3*t]); a3 = mul_float2(twiddles[4*k+2],smem[x+3*t]);
a4 = mul_float2(sincos_float2(theta*4),smem[x+4*t]); a4 = mul_float2(twiddles[4*k+3],smem[x+4*t]);
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
b2 = b1 + a4;
b0 = a0 - (float2)0.25f * b2;
b1 = (float2)fft5_2 * (b1 - a4);
a4 = -(float2)fft5_3 * (a1 + a3);
a4 = twiddle(a4);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
} }
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
@ -257,7 +204,28 @@ void fft_radix5(__local float2* smem, const int x, const int block_size, const i
const int dst_ind = ((x - k) * 5) + k; const int dst_ind = ((x - k) * 5) + k;
__local float2* dst = smem + dst_ind; __local float2* dst = smem + dst_ind;
dst[0] = a0 + b2; float2 b0, b1, b5;
b1 = a1 + a4;
a1 -= a4;
a4 = a3 + a2;
a3 -= a2;
a2 = b1 + a4;
b0 = a0 - (float2)0.25f * a2;
b1 = (float2)fft5_2 * (b1 - a4);
a4 = (float2)fft5_3 * (float2)(-a1.y - a3.y, a1.x + a3.x);
b5 = (float2)(a4.x - fft5_5 * a1.y, a4.y + fft5_5 * a1.x);
a4.x += fft5_4 * a3.y;
a4.y -= fft5_4 * a3.x;
a1 = b0 + b1;
b0 -= b1;
dst[0] = a0 + a2;
dst[block_size] = a1 + a4; dst[block_size] = a1 + a4;
dst[2 * block_size] = b0 + b5; dst[2 * block_size] = b0 + b5;
dst[3 * block_size] = b0 - b5; dst[3 * block_size] = b0 - b5;
@ -267,8 +235,9 @@ void fft_radix5(__local float2* smem, const int x, const int block_size, const i
barrier(CLK_LOCAL_MEM_FENCE); barrier(CLK_LOCAL_MEM_FENCE);
} }
__kernel void fft_multi_radix(__global const uchar* srcptr, int src_step, int src_offset, __kernel void fft_multi_radix(__global const uchar* src_ptr, int src_step, int src_offset,
__global uchar* dstptr, int dst_step, int dst_offset, __global uchar* dst_ptr, int dst_step, int dst_offset,
__global const uchar* twiddles_ptr, int twiddles_step, int twiddles_offset,
const int t, const int nz) const int t, const int nz)
{ {
const int x = get_global_id(0); const int x = get_global_id(0);
@ -277,8 +246,9 @@ __kernel void fft_multi_radix(__global const uchar* srcptr, int src_step, int sr
if (y < nz) if (y < nz)
{ {
__local float2 smem[LOCAL_SIZE]; __local float2 smem[LOCAL_SIZE];
__global const float2* src = (__global const float2*)(srcptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset))); __global const float2* src = (__global const float2*)(src_ptr + mad24(y, src_step, mad24(x, (int)(sizeof(float)*2), src_offset)));
__global float2* dst = (__global float2*)(dstptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset))); __global float2* dst = (__global float2*)(dst_ptr + mad24(y, dst_step, mad24(x, (int)(sizeof(float)*2), dst_offset)));
__global const float2* twiddles = (__global float2*) twiddles_ptr;
const int block_size = LOCAL_SIZE/kercn; const int block_size = LOCAL_SIZE/kercn;
#pragma unroll #pragma unroll
@ -292,6 +262,8 @@ __kernel void fft_multi_radix(__global const uchar* srcptr, int src_step, int sr
// copy data to dst // copy data to dst
#pragma unroll #pragma unroll
for (int i=0; i<kercn; i++) for (int i=0; i<kercn; i++)
{
dst[i*block_size] = smem[x + i*block_size]; dst[i*block_size] = smem[x + i*block_size];
} }
} }
}

View File

@ -115,10 +115,10 @@ OCL_TEST_P(Dft, Mat)
OCL_OFF(cv::dft(src, dst, dft_flags)); OCL_OFF(cv::dft(src, dst, dft_flags));
OCL_ON(cv::dft(usrc, udst, dft_flags)); OCL_ON(cv::dft(usrc, udst, dft_flags));
Mat gpu = udst.getMat(ACCESS_READ); //Mat gpu = udst.getMat(ACCESS_READ);
std::cout << src << std::endl; //std::cout << src << std::endl;
std::cout << dst << std::endl; //std::cout << dst << std::endl;
std::cout << gpu << std::endl; //std::cout << gpu << std::endl;
//int cn = udst.channels(); //int cn = udst.channels();