Enabled precalculated wave

This commit is contained in:
Alexander Karsakov
2014-07-10 18:10:46 +04:00
parent 5dd9263848
commit 0318d27720
5 changed files with 187 additions and 187 deletions

View File

@@ -2034,26 +2034,6 @@ namespace cv
#ifdef HAVE_OPENCL
static bool fft_radixN(InputArray _src, OutputArray _dst, int radix, int block_size, int nonzero_rows, int flags)
{
int N = _src.size().width;
if (N % radix)
return false;
UMat src = _src.getUMat();
UMat dst = _dst.getUMat();
int thread_count = N / radix;
size_t globalsize[2] = { thread_count, nonzero_rows };
String kernel_name = format("fft_radix%d", radix);
ocl::Kernel k(kernel_name.c_str(), ocl::core::fft_oclsrc, (flags & DFT_INVERSE) != 0 ? "-D INVERSE" : "");
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), block_size, thread_count, nonzero_rows);
return k.run(2, globalsize, NULL, false);
}
static bool ocl_packToCCS(InputArray _buffer, OutputArray _dst, int flags)
{
UMat buffer = _buffer.getUMat();
@@ -2098,24 +2078,18 @@ static bool ocl_packToCCS(InputArray _buffer, OutputArray _dst, int flags)
return true;
}
static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows, int flags)
static std::vector<int> ocl_getRadixes(int cols, int& min_radix)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
UMat src = _src.getUMat();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int factors[34];
int nf = DFTFactorize( src.cols, factors );
int nf = DFTFactorize( cols, factors );
int n = 1;
int factor_index = 0;
String radix_processing;
int min_radix = INT_MAX;
// 1. 2^n transforms
// choose radix order
std::vector<int> radixes;
// 2^n transforms
if ( (factors[factor_index] & 1) == 0 )
{
for( ; n < factors[factor_index]; )
@@ -2126,24 +2100,76 @@ static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows,
else if (4*n <= factors[0])
radix = 4;
radix_processing += format("fft_radix%d(smem,x,%d,%d);", radix, n, src.cols/radix);
min_radix = min(radix, min_radix);
radixes.push_back(radix);
min_radix = min(min_radix, radix);
n *= radix;
}
factor_index++;
}
// 2. all the other transforms
// all the other transforms
for( ; factor_index < nf; factor_index++ )
{
int radix = factors[factor_index];
radix_processing += format("fft_radix%d(smem,x,%d,%d);", radix, n, src.cols/radix);
min_radix = min(radix, min_radix);
radixes.push_back(factors[factor_index]);
min_radix = min(min_radix, factors[factor_index]);
}
return radixes;
}
static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, InputOutputArray _twiddles, int nonzero_rows, int flags)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
UMat src = _src.getUMat();
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int min_radix = INT_MAX;
std::vector<int> radixes = ocl_getRadixes(src.cols, min_radix);
// generate string with radix calls
String radix_processing;
int n = 1, twiddle_index = 0;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
radix_processing += format("fft_radix%d(smem,twiddles+%d,x,%d,%d);", radix, twiddle_index, n, src.cols/radix);
twiddle_index += (radix-1)*n;
n *= radix;
}
UMat dst = _dst.getUMat();
UMat twiddles = _twiddles.getUMat();
if (twiddles.cols != twiddle_index)
{
// need to create/update tweedle table
int buffer_size = twiddle_index;
twiddles.create(1, buffer_size, CV_32FC2);
Mat tw = twiddles.getMat(ACCESS_WRITE);
float* ptr = tw.ptr<float>();
int ptr_index = 0;
int n = 1;
for (size_t i=0; i<radixes.size(); i++)
{
int radix = radixes[i];
n *= radix;
for (int k=0; k<(n/radix); k++)
{
double theta = -CV_TWO_PI*k/n;
for (int j=1; j<radix; j++)
{
ptr[ptr_index++] = cos(j*theta);
ptr[ptr_index++] = sin(j*theta);
}
}
}
}
//Mat buf = twiddles.getMat(ACCESS_READ);
UMat dst = _dst.getUMat();
int thread_count = src.cols / min_radix;
size_t globalsize[2] = { thread_count, nonzero_rows };
size_t localsize[2] = { thread_count, 1 };
@@ -2154,7 +2180,7 @@ static bool ocl_dft_C2C_row(InputArray _src, OutputArray _dst, int nonzero_rows,
if (k.empty())
return false;
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), thread_count, nonzero_rows);
k.args(ocl::KernelArg::ReadOnlyNoSize(src), ocl::KernelArg::WriteOnlyNoSize(dst), ocl::KernelArg::ReadOnlyNoSize(twiddles), thread_count, nonzero_rows);
return k.run(2, globalsize, localsize, false);
}
@@ -2232,25 +2258,26 @@ static bool ocl_dft(InputArray _src, OutputArray _dst, int flags, int nonzero_ro
if( nonzero_rows <= 0 || nonzero_rows > _src.rows() )
nonzero_rows = _src.rows();
UMat buffer;
if (!ocl_dft_C2C_row(src, dst, nonzero_rows, flags))
if (!ocl_dft_C2C_row(src, dst, buffer, nonzero_rows, flags))
return false;
if ((flags & DFT_ROWS) == 0 && nonzero_rows > 1)
{
transpose(dst, dst);
if (!ocl_dft_C2C_row(dst, dst, dst.rows, flags))
if (!ocl_dft_C2C_row(dst, dst, buffer, dst.rows, flags))
return false;
transpose(dst, dst);
}
//if (complex_output)
//{
// if (real_input && is1d)
// _dst.assign(buffer.colRange(0, buffer.cols/2+1));
// else
// _dst.assign(buffer);
//}
if (complex_output)
{
if (real_input && is1d)
_dst.assign(dst.colRange(0, dst.cols/2+1));
else
_dst.assign(dst);
}
//else
//{
// if (!inv)