it finally works!!!
This commit is contained in:
parent
ef509ace43
commit
02fb3f0a77
@ -44,6 +44,7 @@
|
||||
|
||||
#include "cascadedetect.hpp"
|
||||
#include "opencv2/objdetect/objdetect_c.h"
|
||||
#include "opencl_kernels.hpp"
|
||||
|
||||
#if defined (LOG_CASCADE_STATISTIC)
|
||||
struct Logger
|
||||
@ -491,7 +492,7 @@ bool HaarEvaluator::read(const FileNode& node)
|
||||
features->resize(n);
|
||||
FileNodeIterator it = node.begin();
|
||||
hasTiltedFeatures = false;
|
||||
std::vector<Feature> ff = *features;
|
||||
std::vector<Feature>& ff = *features;
|
||||
sumSize0 = Size();
|
||||
ufbuf.release();
|
||||
|
||||
@ -552,30 +553,37 @@ bool HaarEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSiz
|
||||
tofs = (int)((utilted.offset - usum.offset)/sizeof(int));
|
||||
}
|
||||
else
|
||||
{
|
||||
integral(_image, usum, noArray(), noArray(), CV_32S);
|
||||
}
|
||||
|
||||
sqrBoxFilter(_image, usqsum, CV_32S,
|
||||
Size(normrect.width, normrect.height),
|
||||
Point(0, 0), false);
|
||||
/*sqrBoxFilter(_image.getMat(), sqsum, CV_32S,
|
||||
Size(normrect.width, normrect.height),
|
||||
Point(0, 0), false);
|
||||
sqsum.copyTo(usqsum);*/
|
||||
sumStep = (int)(usum.step/usum.elemSize());
|
||||
}
|
||||
else
|
||||
{
|
||||
sum0.create(rn*rn_scale, cn, CV_32S);
|
||||
sqsum0.create(rn, cn, CV_64F);
|
||||
sqsum0.create(rn, cn, CV_32S);
|
||||
sum = sum0(Rect(0, 0, cols+1, rows+1));
|
||||
sqsum = sqsum0(Rect(0, 0, cols+1, rows+1));
|
||||
sqsum = sqsum0(Rect(0, 0, cols, rows));
|
||||
|
||||
if( hasTiltedFeatures )
|
||||
{
|
||||
Mat tilted = sum0(Rect(0, _sumSize.height, cols+1, rows+1));
|
||||
integral(_image, sum, sqsum, tilted, CV_32S);
|
||||
integral(_image, sum, noArray(), tilted, CV_32S);
|
||||
tofs = (int)((tilted.data - sum.data)/sizeof(int));
|
||||
}
|
||||
else
|
||||
integral(_image, sum, sqsum, noArray(), CV_32S);
|
||||
/*sqrBoxFilter(_image, sqsum, CV_32S,
|
||||
integral(_image, sum, noArray(), noArray(), CV_32S);
|
||||
sqrBoxFilter(_image, sqsum, CV_32S,
|
||||
Size(normrect.width, normrect.height),
|
||||
Point(0, 0), false);*/
|
||||
Point(0, 0), false);
|
||||
sumStep = (int)(sum.step/sum.elemSize());
|
||||
}
|
||||
|
||||
@ -592,7 +600,7 @@ bool HaarEvaluator::setImage( InputArray _image, Size _origWinSize, Size _sumSiz
|
||||
optfeaturesPtr[fi].setOffsets( ff[fi], sumStep, tofs );
|
||||
}
|
||||
if( _image.isUMat() && (sumSize0 != _sumSize || ufbuf.empty()) )
|
||||
copyVectorToUMat(ff, ufbuf);
|
||||
copyVectorToUMat(*optfeatures, ufbuf);
|
||||
sumSize0 = _sumSize;
|
||||
|
||||
return true;
|
||||
@ -608,13 +616,7 @@ bool HaarEvaluator::setWindow( Point pt )
|
||||
|
||||
const int* p = &sum.at<int>(pt);
|
||||
int valsum = CALC_SUM_OFS(nofs, p);
|
||||
|
||||
int nqofs[4];
|
||||
CV_SUM_OFS( nqofs[0], nqofs[1], nqofs[2], nqofs[3], 0, normrect, (int)(sqsum.step/sizeof(double)) );
|
||||
const double* pq = &sqsum.at<double>(pt);
|
||||
double valsqsum = CALC_SUM_OFS(nqofs, pq);
|
||||
|
||||
//double valsqsum = sqsum.at<int>(pt.y + normrect.y, pt.x + normrect.x);
|
||||
double valsqsum = sqsum.at<int>(pt.y + normrect.y, pt.x + normrect.x);
|
||||
|
||||
double nf = (double)normrect.area() * valsqsum - (double)valsum * valsum;
|
||||
if( nf > 0. )
|
||||
@ -1131,8 +1133,6 @@ bool CascadeClassifierImpl::detectSingleScale( InputArray _image, Size processin
|
||||
bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size processingRectSize,
|
||||
int yStep, double factor, Size sumSize0 )
|
||||
{
|
||||
const int MAX_FACES = 10000;
|
||||
|
||||
Ptr<HaarEvaluator> haar = featureEvaluator.dynamicCast<HaarEvaluator>();
|
||||
if( haar.empty() )
|
||||
return false;
|
||||
@ -1141,7 +1141,8 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
|
||||
if( cascadeKernel.empty() )
|
||||
{
|
||||
//cascadeKernel.create(")
|
||||
cascadeKernel.create("runHaarClassifierStump", ocl::objdetect::haarobjectdetect_oclsrc,
|
||||
format("-D MAX_FACES=%d", MAX_FACES));
|
||||
if( cascadeKernel.empty() )
|
||||
return false;
|
||||
}
|
||||
@ -1152,30 +1153,35 @@ bool CascadeClassifierImpl::ocl_detectSingleScale( InputArray _image, Size proce
|
||||
copyVectorToUMat(data.classifiers, uclassifiers);
|
||||
copyVectorToUMat(data.nodes, unodes);
|
||||
copyVectorToUMat(data.leaves, uleaves);
|
||||
ufacepos.create(1, MAX_FACES*4 + 1, CV_32S);
|
||||
}
|
||||
|
||||
std::vector<UMat> bufs;
|
||||
haar->getUMats(bufs);
|
||||
CV_Assert(bufs.size() == 3);
|
||||
|
||||
|
||||
Rect normrect = haar->getNormRect();
|
||||
|
||||
//processingRectSize = Size(yStep, yStep);
|
||||
size_t globalsize[] = { processingRectSize.width/yStep, processingRectSize.height/yStep };
|
||||
|
||||
return cascadeKernel.args(ocl::KernelArg::ReadOnly(bufs[0]), // sum
|
||||
ocl::KernelArg::ReadOnly(bufs[1]), // sqsum
|
||||
cascadeKernel.args(ocl::KernelArg::ReadOnlyNoSize(bufs[0]), // sum
|
||||
ocl::KernelArg::ReadOnlyNoSize(bufs[1]), // sqsum
|
||||
ocl::KernelArg::PtrReadOnly(bufs[2]), // optfeatures
|
||||
|
||||
// cascade classifier
|
||||
(int)data.stages.size(),
|
||||
ocl::KernelArg::PtrReadOnly(ustages),
|
||||
ocl::KernelArg::PtrReadOnly(uclassifiers),
|
||||
ocl::KernelArg::PtrReadOnly(unodes),
|
||||
ocl::KernelArg::PtrReadOnly(uleaves),
|
||||
|
||||
ocl::KernelArg::WriteOnly(ufacepos), // positions
|
||||
ocl::KernelArg::PtrReadOnly(uparams),
|
||||
processingRectSize.width,
|
||||
processingRectSize.height,
|
||||
yStep, (float)factor, MAX_FACES).run(2, globalsize, 0, false);
|
||||
ocl::KernelArg::PtrWriteOnly(ufacepos), // positions
|
||||
processingRectSize,
|
||||
yStep, (float)factor,
|
||||
normrect, data.origWinSize);
|
||||
bool ok = cascadeKernel.run(2, globalsize, 0, true);
|
||||
//CV_Assert(ok);
|
||||
return ok;
|
||||
}
|
||||
|
||||
bool CascadeClassifierImpl::isOldFormatCascade() const
|
||||
@ -1234,12 +1240,13 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
|
||||
if( maxObjectSize.height == 0 || maxObjectSize.width == 0 )
|
||||
maxObjectSize = imgsz;
|
||||
|
||||
bool use_ocl = false;/*ocl::useOpenCL() &&
|
||||
bool use_ocl = ocl::useOpenCL() &&
|
||||
getFeatureType() == FeatureEvaluator::HAAR &&
|
||||
!isOldFormatCascade() &&
|
||||
data.isStumpBased &&
|
||||
maskGenerator.empty() &&
|
||||
!outputRejectLevels &&
|
||||
tryOpenCL;*/
|
||||
tryOpenCL;
|
||||
|
||||
if( !use_ocl )
|
||||
{
|
||||
@ -1268,13 +1275,20 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
|
||||
}
|
||||
|
||||
Size sumSize0((imgsz.width + SUM_ALIGN) & -SUM_ALIGN, imgsz.height+1);
|
||||
|
||||
if( use_ocl )
|
||||
{
|
||||
ufacepos.create(1, MAX_FACES*4 + 1, CV_32S);
|
||||
UMat ufacecount(ufacepos, Rect(0,0,1,1));
|
||||
ufacecount.setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
for( double factor = 1; ; factor *= scaleFactor )
|
||||
{
|
||||
Size originalWindowSize = getOriginalWindowSize();
|
||||
|
||||
Size windowSize( cvRound(originalWindowSize.width*factor), cvRound(originalWindowSize.height*factor) );
|
||||
Size scaledImageSize( cvRound( grayImage.cols/factor ), cvRound( grayImage.rows/factor ) );
|
||||
Size scaledImageSize( cvRound( imgsz.width/factor ), cvRound( imgsz.height/factor ) );
|
||||
Size processingRectSize( scaledImageSize.width - originalWindowSize.width,
|
||||
scaledImageSize.height - originalWindowSize.height );
|
||||
|
||||
@ -1331,6 +1345,7 @@ void CascadeClassifierImpl::detectMultiScaleNoGrouping( InputArray _image, std::
|
||||
Mat facepos = ufacepos.getMat(ACCESS_READ);
|
||||
const int* fptr = facepos.ptr<int>();
|
||||
int i, nfaces = fptr[0];
|
||||
printf("nfaces = %d\n", nfaces);
|
||||
for( i = 0; i < nfaces; i++ )
|
||||
{
|
||||
candidates.push_back(Rect(fptr[i*4+1], fptr[i*4+2], fptr[i*4+3], fptr[i*4+4]));
|
||||
@ -1439,8 +1454,6 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
origWinSize.height = (int)root[CC_HEIGHT];
|
||||
CV_Assert( origWinSize.height > 0 && origWinSize.width > 0 );
|
||||
|
||||
isStumpBased = (int)(root[CC_STAGE_PARAMS][CC_MAX_DEPTH]) == 1 ? true : false;
|
||||
|
||||
// load feature params
|
||||
FileNode fn = root[CC_FEATURE_PARAMS];
|
||||
if( fn.empty() )
|
||||
@ -1460,6 +1473,7 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
nodes.clear();
|
||||
|
||||
FileNodeIterator it = fn.begin(), it_end = fn.end();
|
||||
isStumpBased = true;
|
||||
|
||||
for( int si = 0; it != it_end; si++, ++it )
|
||||
{
|
||||
@ -1485,6 +1499,9 @@ bool CascadeClassifierImpl::Data::read(const FileNode &root)
|
||||
|
||||
DTree tree;
|
||||
tree.nodeCount = (int)internalNodes.size()/nodeStep;
|
||||
if( tree.nodeCount > 1 )
|
||||
isStumpBased = false;
|
||||
|
||||
classifiers.push_back(tree);
|
||||
|
||||
nodes.reserve(nodes.size() + tree.nodeCount);
|
||||
|
@ -63,8 +63,8 @@ protected:
|
||||
double scaleFactor, Size minObjectSize, Size maxObjectSize,
|
||||
bool outputRejectLevels = false );
|
||||
|
||||
enum { BOOST = 0
|
||||
};
|
||||
enum { MAX_FACES = 10000 };
|
||||
enum { BOOST = 0 };
|
||||
enum { DO_CANNY_PRUNING = CASCADE_DO_CANNY_PRUNING,
|
||||
SCALE_IMAGE = CASCADE_SCALE_IMAGE,
|
||||
FIND_BIGGEST_OBJECT = CASCADE_FIND_BIGGEST_OBJECT,
|
||||
@ -132,7 +132,7 @@ protected:
|
||||
|
||||
Ptr<MaskGenerator> maskGenerator;
|
||||
UMat ugrayImage, uimageBuffer;
|
||||
UMat ufacepos, ustages, uclassifiers, unodes, uleaves, usubsets, uparams;
|
||||
UMat ufacepos, ustages, uclassifiers, unodes, uleaves, usubsets;
|
||||
ocl::Kernel cascadeKernel;
|
||||
bool tryOpenCL;
|
||||
|
||||
@ -327,19 +327,19 @@ inline void HaarEvaluator::OptFeature :: setOffsets( const Feature& _f, int step
|
||||
weight[0] = _f.rect[0].weight;
|
||||
weight[1] = _f.rect[1].weight;
|
||||
weight[2] = _f.rect[2].weight;
|
||||
|
||||
Rect r2 = weight[2] > 0 ? _f.rect[2].r : Rect(0,0,0,0);
|
||||
if (_f.tilted)
|
||||
{
|
||||
CV_TILTED_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], tofs, _f.rect[0].r, step );
|
||||
CV_TILTED_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], tofs, _f.rect[1].r, step );
|
||||
if (weight[2])
|
||||
CV_TILTED_PTRS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], tofs, _f.rect[2].r, step );
|
||||
CV_TILTED_PTRS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], tofs, r2, step );
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_SUM_OFS( ofs[0][0], ofs[0][1], ofs[0][2], ofs[0][3], 0, _f.rect[0].r, step );
|
||||
CV_SUM_OFS( ofs[1][0], ofs[1][1], ofs[1][2], ofs[1][3], 0, _f.rect[1].r, step );
|
||||
if (weight[2])
|
||||
CV_SUM_OFS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], 0, _f.rect[2].r, step );
|
||||
CV_SUM_OFS( ofs[2][0], ofs[2][1], ofs[2][2], ofs[2][3], 0, r2, step );
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -12,6 +12,7 @@
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Erping Pang, erping@multicorewareinc.com
|
||||
// Vadim Pisarevsky, vadim.pisarevsky@itseez.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
@ -38,559 +39,117 @@
|
||||
//
|
||||
//
|
||||
|
||||
#define CV_HAAR_FEATURE_MAX 3
|
||||
|
||||
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
|
||||
#define calc_sum1(rect,offset,i) (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset])
|
||||
|
||||
typedef int sumtype;
|
||||
typedef float sqsumtype;
|
||||
|
||||
#ifndef STUMP_BASED
|
||||
#define STUMP_BASED 1
|
||||
#endif
|
||||
|
||||
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
||||
typedef struct __attribute__((aligned(4))) OptFeature
|
||||
{
|
||||
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
|
||||
float weight[CV_HAAR_FEATURE_MAX];
|
||||
float threshold;
|
||||
float alpha[3] __attribute__((aligned (16)));
|
||||
int4 ofs[3] __attribute__((aligned (4)));
|
||||
float4 weight __attribute__((aligned (4)));
|
||||
}
|
||||
OptFeature;
|
||||
|
||||
typedef struct __attribute__((aligned(4))) DTreeNode
|
||||
{
|
||||
int featureIdx __attribute__((aligned (4)));
|
||||
float threshold __attribute__((aligned (4))); // for ordered features only
|
||||
int left __attribute__((aligned (4)));
|
||||
int right __attribute__((aligned (4)));
|
||||
}
|
||||
GpuHidHaarTreeNode;
|
||||
DTreeNode;
|
||||
|
||||
|
||||
//typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
||||
//{
|
||||
// int count __attribute__((aligned (4)));
|
||||
// GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
||||
// float* alpha __attribute__((aligned (8)));
|
||||
//}
|
||||
//GpuHidHaarClassifier;
|
||||
|
||||
|
||||
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||||
typedef struct __attribute__((aligned (4))) DTree
|
||||
{
|
||||
int count __attribute__((aligned (4)));
|
||||
int nodeCount __attribute__((aligned (4)));
|
||||
}
|
||||
DTree;
|
||||
|
||||
typedef struct __attribute__((aligned (4))) Stage
|
||||
{
|
||||
int first __attribute__((aligned (4)));
|
||||
int ntrees __attribute__((aligned (4)));
|
||||
float threshold __attribute__((aligned (4)));
|
||||
int two_rects __attribute__((aligned (4)));
|
||||
int reserved0 __attribute__((aligned (8)));
|
||||
int reserved1 __attribute__((aligned (8)));
|
||||
int reserved2 __attribute__((aligned (8)));
|
||||
int reserved3 __attribute__((aligned (8)));
|
||||
}
|
||||
GpuHidHaarStageClassifier;
|
||||
Stage;
|
||||
|
||||
__kernel void runHaarClassifierStump(
|
||||
__global const int* sum,
|
||||
int sumstep, int sumoffset,
|
||||
__global const int* sqsum,
|
||||
int sqsumstep, int sqsumoffset,
|
||||
__global const OptFeature* optfeatures,
|
||||
|
||||
//typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||
//{
|
||||
// int count __attribute__((aligned (4)));
|
||||
// int is_stump_based __attribute__((aligned (4)));
|
||||
// int has_tilted_features __attribute__((aligned (4)));
|
||||
// int is_tree __attribute__((aligned (4)));
|
||||
// int pq0 __attribute__((aligned (4)));
|
||||
// int pq1 __attribute__((aligned (4)));
|
||||
// int pq2 __attribute__((aligned (4)));
|
||||
// int pq3 __attribute__((aligned (4)));
|
||||
// int p0 __attribute__((aligned (4)));
|
||||
// int p1 __attribute__((aligned (4)));
|
||||
// int p2 __attribute__((aligned (4)));
|
||||
// int p3 __attribute__((aligned (4)));
|
||||
// float inv_window_area __attribute__((aligned (4)));
|
||||
//} GpuHidHaarClassifierCascade;
|
||||
|
||||
|
||||
#ifdef PACKED_CLASSIFIER
|
||||
// this code is scalar, one pixel -> one workitem
|
||||
__kernel void gpuRunHaarClassifierCascadePacked(
|
||||
global const GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
global const int4 * info,
|
||||
global const GpuHidHaarTreeNode * nodeptr,
|
||||
global const int * restrict sum,
|
||||
global const float * restrict sqsum,
|
||||
volatile global int4 * candidate,
|
||||
const int pixelstep,
|
||||
const int loopcount,
|
||||
const int start_stage,
|
||||
const int split_stage,
|
||||
const int end_stage,
|
||||
const int startnode,
|
||||
const int splitnode,
|
||||
const int4 p,
|
||||
const int4 pq,
|
||||
const float correction,
|
||||
global const int* pNodesPK,
|
||||
global const int4* pWGInfo
|
||||
)
|
||||
int nstages,
|
||||
__global const Stage* stages,
|
||||
__global const DTree* trees,
|
||||
__global const DTreeNode* nodes,
|
||||
__global const float* leaves,
|
||||
|
||||
volatile __global int* facepos,
|
||||
int2 imgsize, int xyscale, float factor,
|
||||
int4 normrect, int2 windowsize)
|
||||
{
|
||||
// this version used information provided for each workgroup
|
||||
// no empty WG
|
||||
int gid = (int)get_group_id(0);
|
||||
int lid_x = (int)get_local_id(0);
|
||||
int lid_y = (int)get_local_id(1);
|
||||
int lid = lid_y*LSx+lid_x;
|
||||
int4 WGInfo = pWGInfo[gid];
|
||||
int GroupX = (WGInfo.y >> 16)&0xFFFF;
|
||||
int GroupY = (WGInfo.y >> 0 )& 0xFFFF;
|
||||
int Width = (WGInfo.x >> 16)&0xFFFF;
|
||||
int Height = (WGInfo.x >> 0 )& 0xFFFF;
|
||||
int ImgOffset = WGInfo.z;
|
||||
float ScaleFactor = as_float(WGInfo.w);
|
||||
|
||||
#define DATA_SIZE_X (LSx+WND_SIZE_X)
|
||||
#define DATA_SIZE_Y (LSy+WND_SIZE_Y)
|
||||
#define DATA_SIZE (DATA_SIZE_X*DATA_SIZE_Y)
|
||||
|
||||
local int SumL[DATA_SIZE];
|
||||
|
||||
// read input data window into local mem
|
||||
for(int i = 0; i<DATA_SIZE; i+=(LSx*LSy))
|
||||
int ix = get_global_id(0)*xyscale;
|
||||
int iy = get_global_id(1)*xyscale;
|
||||
sumstep /= sizeof(int);
|
||||
sqsumstep /= sizeof(int);
|
||||
|
||||
if( ix < imgsize.x && iy < imgsize.y )
|
||||
{
|
||||
int index = i+lid; // index in shared local memory
|
||||
if(index<DATA_SIZE)
|
||||
{// calc global x,y coordinat and read data from there
|
||||
int x = min(GroupX + (index % (DATA_SIZE_X)),Width-1);
|
||||
int y = min(GroupY + (index / (DATA_SIZE_X)),Height-1);
|
||||
SumL[index] = sum[ImgOffset+y*pixelstep+x];
|
||||
int ntrees, nodeOfs = 0, leafOfs = 0;
|
||||
int stageIdx, i;
|
||||
float s = 0.f;
|
||||
__global const DTreeNode* node;
|
||||
__global const OptFeature* f;
|
||||
|
||||
__global const int* psum = sum + mad24(iy, sumstep, ix);
|
||||
__global const int* pnsum = psum + mad24(normrect.y, sumstep, normrect.x);
|
||||
int normarea = normrect.z * normrect.w;
|
||||
float invarea = 1.f/normarea;
|
||||
float sval = (pnsum[0] - pnsum[normrect.z] - pnsum[mul24(normrect.w, sumstep)] +
|
||||
pnsum[mad24(normrect.w, sumstep, normrect.z)])*invarea;
|
||||
float sqval = (sqsum[mad24(iy + normrect.y, sqsumstep, ix + normrect.x)])*invarea;
|
||||
float nf = (float)normarea * sqrt(max(sqval - sval * sval, 0.f));
|
||||
float4 weight;
|
||||
int4 ofs;
|
||||
nf = nf > 0 ? nf : 1.f;
|
||||
|
||||
for( stageIdx = 0; stageIdx < nstages; stageIdx++ )
|
||||
{
|
||||
ntrees = stages[stageIdx].ntrees;
|
||||
s = 0.f;
|
||||
for( i = 0; i < ntrees; i++, nodeOfs++, leafOfs += 2 )
|
||||
{
|
||||
node = nodes + nodeOfs;
|
||||
f = optfeatures + node->featureIdx;
|
||||
|
||||
weight = f->weight;
|
||||
|
||||
ofs = f->ofs[0];
|
||||
sval = (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.x;
|
||||
ofs = f->ofs[1];
|
||||
sval += (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.y;
|
||||
if( weight.z > 0 )
|
||||
{
|
||||
ofs = f->ofs[2];
|
||||
sval += (psum[ofs.x] - psum[ofs.y] - psum[ofs.z] + psum[ofs.w])*weight.z;
|
||||
}
|
||||
s += leaves[ sval < node->threshold*nf ? leafOfs : leafOfs + 1 ];
|
||||
}
|
||||
|
||||
if( s < stages[stageIdx].threshold )
|
||||
break;
|
||||
}
|
||||
|
||||
if( stageIdx == nstages )
|
||||
{
|
||||
int nfaces = atomic_inc(facepos);
|
||||
//printf("detected face #d!!!!\n", nfaces);
|
||||
if( nfaces < MAX_FACES )
|
||||
{
|
||||
volatile __global int* face = facepos + 1 + nfaces*4;
|
||||
face[0] = convert_int_rte(ix*factor);
|
||||
face[1] = convert_int_rte(iy*factor);
|
||||
face[2] = convert_int_rte(windowsize.x*factor);
|
||||
face[3] = convert_int_rte(windowsize.y*factor);
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
// calc variance_norm_factor for all stages
|
||||
float variance_norm_factor;
|
||||
int nodecounter= startnode;
|
||||
int4 info1 = p;
|
||||
int4 info2 = pq;
|
||||
|
||||
{
|
||||
int xl = lid_x;
|
||||
int yl = lid_y;
|
||||
int OffsetLocal = yl * DATA_SIZE_X + xl;
|
||||
int OffsetGlobal = (GroupY+yl)* pixelstep + (GroupX+xl);
|
||||
|
||||
// add shift to get position on scaled image
|
||||
OffsetGlobal += ImgOffset;
|
||||
|
||||
float mean =
|
||||
SumL[info1.y*DATA_SIZE_X+info1.x+OffsetLocal] -
|
||||
SumL[info1.y*DATA_SIZE_X+info1.z+OffsetLocal] -
|
||||
SumL[info1.w*DATA_SIZE_X+info1.x+OffsetLocal] +
|
||||
SumL[info1.w*DATA_SIZE_X+info1.z+OffsetLocal];
|
||||
float sq =
|
||||
sqsum[info2.y*pixelstep+info2.x+OffsetGlobal] -
|
||||
sqsum[info2.y*pixelstep+info2.z+OffsetGlobal] -
|
||||
sqsum[info2.w*pixelstep+info2.x+OffsetGlobal] +
|
||||
sqsum[info2.w*pixelstep+info2.z+OffsetGlobal];
|
||||
|
||||
mean *= correction;
|
||||
sq *= correction;
|
||||
|
||||
variance_norm_factor = sq - mean * mean;
|
||||
variance_norm_factor = (variance_norm_factor >=0.f) ? sqrt(variance_norm_factor) : 1.f;
|
||||
}// end calc variance_norm_factor for all stages
|
||||
|
||||
int result = (1.0f>0.0f);
|
||||
for(int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++ )
|
||||
{// iterate until candidate is exist
|
||||
float stage_sum = 0.0f;
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
int lcl_off = (lid_y*DATA_SIZE_X)+(lid_x);
|
||||
for(int nodeloop = 0; nodeloop < stagecount; nodecounter++,nodeloop++ )
|
||||
{
|
||||
// simple macro to extract shorts from int
|
||||
#define M0(_t) ((_t)&0xFFFF)
|
||||
#define M1(_t) (((_t)>>16)&0xFFFF)
|
||||
// load packed node data from global memory (L3) into registers
|
||||
global const int4* pN = (__global int4*)(pNodesPK+nodecounter*NODE_SIZE);
|
||||
int4 n0 = pN[0];
|
||||
int4 n1 = pN[1];
|
||||
int4 n2 = pN[2];
|
||||
float nodethreshold = as_float(n2.y) * variance_norm_factor;
|
||||
// calc sum of intensity pixels according to node information
|
||||
float classsum =
|
||||
(SumL[M0(n0.x)+lcl_off] - SumL[M1(n0.x)+lcl_off] - SumL[M0(n0.y)+lcl_off] + SumL[M1(n0.y)+lcl_off]) * as_float(n1.z) +
|
||||
(SumL[M0(n0.z)+lcl_off] - SumL[M1(n0.z)+lcl_off] - SumL[M0(n0.w)+lcl_off] + SumL[M1(n0.w)+lcl_off]) * as_float(n1.w) +
|
||||
(SumL[M0(n1.x)+lcl_off] - SumL[M1(n1.x)+lcl_off] - SumL[M0(n1.y)+lcl_off] + SumL[M1(n1.y)+lcl_off]) * as_float(n2.x);
|
||||
//accumulate stage responce
|
||||
stage_sum += (classsum >= nodethreshold) ? as_float(n2.w) : as_float(n2.z);
|
||||
}
|
||||
result = (stage_sum >= stagethreshold);
|
||||
}// next stage if needed
|
||||
|
||||
if(result)
|
||||
{// all stages will be passed and there is a detected face on the tested position
|
||||
int index = 1+atomic_inc((volatile global int*)candidate); //get index to write global data with face info
|
||||
if(index<OUTPUTSZ)
|
||||
{
|
||||
int x = GroupX+lid_x;
|
||||
int y = GroupY+lid_y;
|
||||
int4 candidate_result;
|
||||
candidate_result.x = convert_int_rtn(x*ScaleFactor);
|
||||
candidate_result.y = convert_int_rtn(y*ScaleFactor);
|
||||
candidate_result.z = convert_int_rtn(ScaleFactor*WND_SIZE_X);
|
||||
candidate_result.w = convert_int_rtn(ScaleFactor*WND_SIZE_Y);
|
||||
candidate[index] = candidate_result;
|
||||
}
|
||||
}
|
||||
}//end gpuRunHaarClassifierCascade
|
||||
#else
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
global int4 * info,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global const int * restrict sum1,
|
||||
global const float * restrict sqsum1,
|
||||
global int4 * candidate,
|
||||
const int pixelstep,
|
||||
const int loopcount,
|
||||
const int start_stage,
|
||||
const int split_stage,
|
||||
const int end_stage,
|
||||
const int startnode,
|
||||
const int splitnode,
|
||||
const int4 p,
|
||||
const int4 pq,
|
||||
const float correction)
|
||||
{
|
||||
int grpszx = get_local_size(0);
|
||||
int grpszy = get_local_size(1);
|
||||
int grpnumx = get_num_groups(0);
|
||||
int grpidx = get_group_id(0);
|
||||
int lclidx = get_local_id(0);
|
||||
int lclidy = get_local_id(1);
|
||||
|
||||
int lcl_sz = mul24(grpszx,grpszy);
|
||||
int lcl_id = mad24(lclidy,grpszx,lclidx);
|
||||
|
||||
__local int lclshare[1024];
|
||||
__local int* lcldata = lclshare;//for save win data
|
||||
__local int* glboutindex = lcldata + 28*28;//for save global out index
|
||||
__local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel
|
||||
__local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel
|
||||
__local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1));
|
||||
glboutindex[0]=0;
|
||||
int outputoff = mul24(grpidx,256);
|
||||
|
||||
//assume window size is 20X20
|
||||
#define WINDOWSIZE 20+1
|
||||
//make sure readwidth is the multiple of 4
|
||||
//ystep =1, from host code
|
||||
int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2;
|
||||
int readheight = grpszy-1+WINDOWSIZE;
|
||||
int read_horiz_cnt = readwidth >> 2;//each read int4
|
||||
int total_read = mul24(read_horiz_cnt,readheight);
|
||||
int read_loop = (total_read + lcl_sz - 1) >> 6;
|
||||
candidate[outputoff+(lcl_id<<2)] = (int4)0;
|
||||
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
|
||||
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
|
||||
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
|
||||
for(int scalei = 0; scalei <loopcount; scalei++)
|
||||
{
|
||||
int4 scaleinfo1= info[scalei];
|
||||
int height = scaleinfo1.x & 0xffff;
|
||||
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
|
||||
int totalgrp = scaleinfo1.y & 0xffff;
|
||||
int imgoff = scaleinfo1.z;
|
||||
float factor = as_float(scaleinfo1.w);
|
||||
|
||||
__global const int * sum = sum1 + imgoff;
|
||||
__global const float * sqsum = sqsum1 + imgoff;
|
||||
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
|
||||
{
|
||||
int grpidy = grploop / grpnumperline;
|
||||
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
||||
int x = mad24(grpidx,grpszx,lclidx);
|
||||
int y = mad24(grpidy,grpszy,lclidy);
|
||||
int grpoffx = x-lclidx;
|
||||
int grpoffy = y-lclidy;
|
||||
|
||||
for(int i=0; i<read_loop; i++)
|
||||
{
|
||||
int pos_id = mad24(i,lcl_sz,lcl_id);
|
||||
pos_id = pos_id < total_read ? pos_id : 0;
|
||||
|
||||
int lcl_y = pos_id / read_horiz_cnt;
|
||||
int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt);
|
||||
|
||||
int glb_x = grpoffx + (lcl_x<<2);
|
||||
int glb_y = grpoffy + lcl_y;
|
||||
|
||||
int glb_off = mad24(min(glb_y, height + WINDOWSIZE - 1),pixelstep,glb_x);
|
||||
int4 data = *(__global int4*)&sum[glb_off];
|
||||
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
|
||||
|
||||
vstore4(data, 0, &lcldata[lcl_off]);
|
||||
}
|
||||
|
||||
lcloutindex[lcl_id] = 0;
|
||||
lclcount[0] = 0;
|
||||
int result = 1;
|
||||
int nodecounter= startnode;
|
||||
float mean, variance_norm_factor;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
int lcl_off = mad24(lclidy,readwidth,lclidx);
|
||||
int4 cascadeinfo1, cascadeinfo2;
|
||||
cascadeinfo1 = p;
|
||||
cascadeinfo2 = pq;
|
||||
|
||||
cascadeinfo1.x +=lcl_off;
|
||||
cascadeinfo1.z +=lcl_off;
|
||||
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
|
||||
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
||||
*correction;
|
||||
|
||||
int p_offset = mad24(y, pixelstep, x);
|
||||
|
||||
cascadeinfo2.x +=p_offset;
|
||||
cascadeinfo2.z +=p_offset;
|
||||
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
|
||||
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
||||
|
||||
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
||||
|
||||
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
for(int nodeloop = 0; nodeloop < stagecount; )
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)nodeptr) + nodecounter * sizeof(GpuHidHaarTreeNode));
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
||||
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x +=lcl_off;
|
||||
info1.z +=lcl_off;
|
||||
info2.x +=lcl_off;
|
||||
info2.z +=lcl_off;
|
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
|
||||
info3.x +=lcl_off;
|
||||
info3.z +=lcl_off;
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
#if STUMP_BASED
|
||||
stage_sum += passThres ? alpha3.y : alpha3.x;
|
||||
nodecounter++;
|
||||
nodeloop++;
|
||||
#else
|
||||
bool isRootNode = (nodecounter & 1) == 0;
|
||||
if(isRootNode)
|
||||
{
|
||||
if( (passThres && currentnodeptr->right) ||
|
||||
(!passThres && currentnodeptr->left))
|
||||
{
|
||||
nodecounter ++;
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += alpha3.x;
|
||||
nodecounter += 2;
|
||||
nodeloop ++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += passThres ? alpha3.z : alpha3.y;
|
||||
nodecounter ++;
|
||||
nodeloop ++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
result = (stage_sum >= stagethreshold) ? 1 : 0;
|
||||
}
|
||||
if(factor < 2)
|
||||
{
|
||||
if(result && lclidx %2 ==0 && lclidy %2 ==0 )
|
||||
{
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
|
||||
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
if(result)
|
||||
{
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
|
||||
lcloutindex[(queueindex<<1)+1] = as_int((float)variance_norm_factor);
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int queuecount = lclcount[0];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
nodecounter = splitnode;
|
||||
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
|
||||
{
|
||||
lclcount[0]=0;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
__global GpuHidHaarStageClassifier* stageinfo = (__global GpuHidHaarStageClassifier*)
|
||||
((__global uchar*)stagecascadeptr+stageloop*sizeof(GpuHidHaarStageClassifier));
|
||||
int stagecount = stageinfo->count;
|
||||
float stagethreshold = stageinfo->threshold;
|
||||
|
||||
int perfscale = queuecount > 4 ? 3 : 2;
|
||||
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
|
||||
int lcl_compute_win = lcl_sz >> perfscale;
|
||||
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
||||
int lcl_loops = (stagecount + lcl_compute_win -1) >> (6-perfscale);
|
||||
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
||||
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
|
||||
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
||||
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
|
||||
|
||||
if(lcl_compute_win_id < queuecount)
|
||||
{
|
||||
int tempnodecounter = lcl_compute_id;
|
||||
float part_sum = 0.f;
|
||||
const int stump_factor = STUMP_BASED ? 1 : 2;
|
||||
int root_offset = 0;
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stagecount;)
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (__global GpuHidHaarTreeNode*)
|
||||
(((__global uchar*)nodeptr) + sizeof(GpuHidHaarTreeNode) * ((nodecounter + tempnodecounter) * stump_factor + root_offset));
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x +=queue_pixel;
|
||||
info1.z +=queue_pixel;
|
||||
info2.x +=queue_pixel;
|
||||
info2.z +=queue_pixel;
|
||||
|
||||
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
||||
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
||||
|
||||
|
||||
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
||||
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
||||
|
||||
info3.x +=queue_pixel;
|
||||
info3.z +=queue_pixel;
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
#if STUMP_BASED
|
||||
part_sum += passThres ? alpha3.y : alpha3.x;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
#else
|
||||
if(root_offset == 0)
|
||||
{
|
||||
if( (passThres && currentnodeptr->right) ||
|
||||
(!passThres && currentnodeptr->left))
|
||||
{
|
||||
root_offset = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
part_sum += alpha3.x;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
part_sum += passThres ? alpha3.z : alpha3.y;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
root_offset = 0;
|
||||
}
|
||||
#endif
|
||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
||||
partialsum[lcl_id]=part_sum;
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
if(lcl_compute_win_id < queuecount)
|
||||
{
|
||||
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
|
||||
{
|
||||
stage_sum += partialsum[lcl_id+i];
|
||||
}
|
||||
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
||||
{
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex<<1] = temp_coord;
|
||||
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
||||
}
|
||||
lcl_compute_win_id +=(1<<perfscale);
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
|
||||
|
||||
queuecount = lclcount[0];
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
nodecounter += stagecount;
|
||||
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
||||
|
||||
if(lcl_id<queuecount)
|
||||
{
|
||||
int temp = lcloutindex[lcl_id<<1];
|
||||
int x = mad24(grpidx,grpszx,temp & 0xffff);
|
||||
int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16));
|
||||
temp = glboutindex[0];
|
||||
int4 candidate_result;
|
||||
candidate_result.zw = (int2)convert_int_rte(factor*20.f);
|
||||
candidate_result.x = convert_int_rte(x*factor);
|
||||
candidate_result.y = convert_int_rte(y*factor);
|
||||
atomic_inc(glboutindex);
|
||||
|
||||
int i = outputoff+temp+lcl_id;
|
||||
if(candidate[i].z == 0)
|
||||
{
|
||||
candidate[i] = candidate_result;
|
||||
}
|
||||
else
|
||||
{
|
||||
for(i=i+1;;i++)
|
||||
{
|
||||
if(candidate[i].z == 0)
|
||||
{
|
||||
candidate[i] = candidate_result;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
|
||||
}//end for(int scalei = 0; scalei <loopcount; scalei++)
|
||||
}
|
||||
#endif
|
||||
|
Loading…
x
Reference in New Issue
Block a user