Merge pull request #5102 from nzjrs:fix-python-digits
This commit is contained in:
commit
02906bf23a
@ -77,7 +77,6 @@ class KNearest(StatModel):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
@ -93,7 +92,6 @@ class SVM(StatModel):
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
|
@ -6,18 +6,12 @@ Grid search is used to find the best parameters for SVM and KNearest classifiers
|
||||
SVM adjustment follows the guidelines given in
|
||||
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
|
||||
|
||||
Threading or cloud computing (with http://www.picloud.com/)) may be used
|
||||
to speedup the computation.
|
||||
|
||||
Usage:
|
||||
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
|
||||
digits_adjust.py [--model {svm|knearest}]
|
||||
|
||||
--model {svm|knearest} - select the classifier (SVM is the default)
|
||||
--cloud - use PiCloud computing platform
|
||||
--env - cloud environment name
|
||||
|
||||
'''
|
||||
# TODO cloud env setup tutorial
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
@ -25,14 +19,6 @@ from multiprocessing.pool import ThreadPool
|
||||
|
||||
from digits import *
|
||||
|
||||
try:
|
||||
import cloud
|
||||
have_cloud = True
|
||||
except ImportError:
|
||||
have_cloud = False
|
||||
|
||||
|
||||
|
||||
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
|
||||
n = len(samples)
|
||||
folds = np.array_split(np.arange(n), kfold)
|
||||
@ -57,23 +43,10 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None)
|
||||
|
||||
|
||||
class App(object):
|
||||
def __init__(self, usecloud=False, cloud_env=''):
|
||||
if usecloud and not have_cloud:
|
||||
print 'warning: cloud module is not installed, running locally'
|
||||
usecloud = False
|
||||
self.usecloud = usecloud
|
||||
self.cloud_env = cloud_env
|
||||
|
||||
if self.usecloud:
|
||||
print 'uploading dataset to cloud...'
|
||||
cloud.files.put(DIGITS_FN)
|
||||
self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env)
|
||||
else:
|
||||
def __init__(self):
|
||||
self._samples, self._labels = self.preprocess()
|
||||
|
||||
def preprocess(self):
|
||||
if self.usecloud:
|
||||
cloud.files.get(DIGITS_FN)
|
||||
digits, labels = load_digits(DIGITS_FN)
|
||||
shuffle = np.random.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
@ -82,16 +55,9 @@ class App(object):
|
||||
return samples, labels
|
||||
|
||||
def get_dataset(self):
|
||||
if self.usecloud:
|
||||
return cloud.result(self.preprocess_job)
|
||||
else:
|
||||
return self._samples, self._labels
|
||||
|
||||
def run_jobs(self, f, jobs):
|
||||
if self.usecloud:
|
||||
jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job)
|
||||
ires = cloud.iresult(jids)
|
||||
else:
|
||||
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
|
||||
ires = pool.imap_unordered(f, jobs)
|
||||
return ires
|
||||
@ -147,7 +113,7 @@ if __name__ == '__main__':
|
||||
|
||||
print __doc__
|
||||
|
||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
|
||||
args, _ = getopt.getopt(sys.argv[1:], '', ['model='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'svm')
|
||||
args.setdefault('--env', '')
|
||||
@ -156,7 +122,7 @@ if __name__ == '__main__':
|
||||
sys.exit(1)
|
||||
|
||||
t = clock()
|
||||
app = App(usecloud='--cloud' in args, cloud_env = args['--env'])
|
||||
app = App()
|
||||
if args['--model'] == 'knearest':
|
||||
app.adjust_KNearest()
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user