diff --git a/samples/python2/digits.py b/samples/python2/digits.py index a0ea337b7..3b1653ff3 100755 --- a/samples/python2/digits.py +++ b/samples/python2/digits.py @@ -77,7 +77,6 @@ class KNearest(StatModel): self.model = cv2.ml.KNearest_create() def train(self, samples, responses): - self.model = cv2.ml.KNearest_create() self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) def predict(self, samples): @@ -93,7 +92,6 @@ class SVM(StatModel): self.model.setType(cv2.ml.SVM_C_SVC) def train(self, samples, responses): - self.model = cv2.ml.SVM_create() self.model.train(samples, cv2.ml.ROW_SAMPLE, responses) def predict(self, samples): diff --git a/samples/python2/digits_adjust.py b/samples/python2/digits_adjust.py index 314731010..fd34c3f70 100755 --- a/samples/python2/digits_adjust.py +++ b/samples/python2/digits_adjust.py @@ -6,18 +6,12 @@ Grid search is used to find the best parameters for SVM and KNearest classifiers SVM adjustment follows the guidelines given in http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf -Threading or cloud computing (with http://www.picloud.com/)) may be used -to speedup the computation. - Usage: - digits_adjust.py [--model {svm|knearest}] [--cloud] [--env ] + digits_adjust.py [--model {svm|knearest}] --model {svm|knearest} - select the classifier (SVM is the default) - --cloud - use PiCloud computing platform - --env - cloud environment name ''' -# TODO cloud env setup tutorial import numpy as np import cv2 @@ -25,14 +19,6 @@ from multiprocessing.pool import ThreadPool from digits import * -try: - import cloud - have_cloud = True -except ImportError: - have_cloud = False - - - def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None): n = len(samples) folds = np.array_split(np.arange(n), kfold) @@ -57,23 +43,10 @@ def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None) class App(object): - def __init__(self, usecloud=False, cloud_env=''): - if usecloud and not have_cloud: - print 'warning: cloud module is not installed, running locally' - usecloud = False - self.usecloud = usecloud - self.cloud_env = cloud_env - - if self.usecloud: - print 'uploading dataset to cloud...' - cloud.files.put(DIGITS_FN) - self.preprocess_job = cloud.call(self.preprocess, _env=self.cloud_env) - else: - self._samples, self._labels = self.preprocess() + def __init__(self): + self._samples, self._labels = self.preprocess() def preprocess(self): - if self.usecloud: - cloud.files.get(DIGITS_FN) digits, labels = load_digits(DIGITS_FN) shuffle = np.random.permutation(len(digits)) digits, labels = digits[shuffle], labels[shuffle] @@ -82,18 +55,11 @@ class App(object): return samples, labels def get_dataset(self): - if self.usecloud: - return cloud.result(self.preprocess_job) - else: - return self._samples, self._labels + return self._samples, self._labels def run_jobs(self, f, jobs): - if self.usecloud: - jids = cloud.map(f, jobs, _env=self.cloud_env, _profile=True, _depends_on=self.preprocess_job) - ires = cloud.iresult(jids) - else: - pool = ThreadPool(processes=cv2.getNumberOfCPUs()) - ires = pool.imap_unordered(f, jobs) + pool = ThreadPool(processes=cv2.getNumberOfCPUs()) + ires = pool.imap_unordered(f, jobs) return ires def adjust_SVM(self): @@ -147,7 +113,7 @@ if __name__ == '__main__': print __doc__ - args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env=']) + args, _ = getopt.getopt(sys.argv[1:], '', ['model=']) args = dict(args) args.setdefault('--model', 'svm') args.setdefault('--env', '') @@ -156,7 +122,7 @@ if __name__ == '__main__': sys.exit(1) t = clock() - app = App(usecloud='--cloud' in args, cloud_env = args['--env']) + app = App() if args['--model'] == 'knearest': app.adjust_KNearest() else: