wrapped FlannBasedMatcher (and extended DescriptorMatcher wrapper)

updated feature_homography.py sample to use new features
This commit is contained in:
Alexander Mordvintsev
2011-09-15 11:10:06 +00:00
parent d174c3db04
commit 028c44531f
4 changed files with 62 additions and 27 deletions

View File

@@ -4,35 +4,53 @@ Feature homography
Example of using features2d framework for interactive video homography matching.
Usage
-----
feature_homography.py [<video source>]
Keys
----
SPACE - set reference frame
ESC - exit
'''
import numpy as np
import cv2
import video
from common import draw_str
from common import draw_str, clock
import sys
detector = cv2.FastFeatureDetector(16, True)
detector = cv2.GridAdaptedFeatureDetector(detector)
extractor = cv2.DescriptorExtractor_create('ORB')
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6, # 12
key_size = 12, # 20
multi_probe_level = 1) #2
matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
green, red = (0, 255, 0), (0, 0, 255)
if __name__ == '__main__':
print __doc__
detector = cv2.FeatureDetector_create('ORB')
extractor = cv2.DescriptorExtractor_create('ORB')
matcher = cv2.DescriptorMatcher_create('BruteForce-Hamming') # 'BruteForce-Hamming' # FlannBased
try: src = sys.argv[1]
except: src = 0
cap = video.create_capture(src)
ref_desc = None
ref_kp = None
green, red = (0, 255, 0), (0, 0, 255)
cap = video.create_capture(0)
while True:
ret, img = cap.read()
vis = img.copy()
kp = detector.detect(img)
kp, desc = extractor.compute(img, kp)
for p in kp:
x, y = np.int32(p.pt)
@@ -40,14 +58,17 @@ if __name__ == '__main__':
cv2.circle(vis, (x, y), r, (0, 255, 0))
draw_str(vis, (20, 20), 'feature_n: %d' % len(kp))
desc = extractor.compute(img, kp)
if ref_desc is not None:
raw_matches = matcher.knnMatch(desc, ref_desc, 2)
eps = 1e-5
matches = [(m1.trainIdx, m1.queryIdx) for m1, m2 in raw_matches if (m1.distance+eps) / (m2.distance+eps) < 0.7]
if ref_kp is not None:
raw_matches = matcher.knnMatch(desc, 2)
matches = []
for m in raw_matches:
if len(m) == 2:
m1, m2 = m
if m1.distance < m2.distance * 0.7:
matches.append((m1.trainIdx, m1.queryIdx))
match_n = len(matches)
inliner_n = 0
inlier_n = 0
if match_n > 10:
p0 = np.float32( [ref_kp[i].pt for i, j in matches] )
p1 = np.float32( [kp[j].pt for i, j in matches] )
@@ -66,7 +87,8 @@ if __name__ == '__main__':
cv2.imshow('img', vis)
ch = cv2.waitKey(1)
if ch == ord(' '):
ref_desc = desc
matcher.clear()
matcher.add([desc])
ref_kp = kp
ref_img = img.copy()
if ch == 27: