refactored downhill simplex implementation a bit; hopefully, fixed the bug with random failures in the tests
This commit is contained in:
@@ -1475,13 +1475,15 @@ Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const
|
|||||||
template<typename _Tp> inline
|
template<typename _Tp> inline
|
||||||
_Tp* Mat_<_Tp>::operator [](int y)
|
_Tp* Mat_<_Tp>::operator [](int y)
|
||||||
{
|
{
|
||||||
return (_Tp*)ptr(y);
|
CV_DbgAssert( 0 <= y && y < rows );
|
||||||
|
return (_Tp*)(data + y*step.p[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename _Tp> inline
|
template<typename _Tp> inline
|
||||||
const _Tp* Mat_<_Tp>::operator [](int y) const
|
const _Tp* Mat_<_Tp>::operator [](int y) const
|
||||||
{
|
{
|
||||||
return (const _Tp*)ptr(y);
|
CV_DbgAssert( 0 <= y && y < rows );
|
||||||
|
return (const _Tp*)(data + y*step.p[0]);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<typename _Tp> inline
|
template<typename _Tp> inline
|
||||||
|
@@ -40,6 +40,9 @@
|
|||||||
//M*/
|
//M*/
|
||||||
#include "precomp.hpp"
|
#include "precomp.hpp"
|
||||||
|
|
||||||
|
/*#define dprintf(x) printf x
|
||||||
|
#define print_matrix(x) print(x)*/
|
||||||
|
|
||||||
#define dprintf(x)
|
#define dprintf(x)
|
||||||
#define print_matrix(x)
|
#define print_matrix(x)
|
||||||
|
|
||||||
@@ -51,7 +54,7 @@ Downhill Simplex method in OpenCV dev 3.0.0 getting this error:
|
|||||||
|
|
||||||
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
|
OpenCV Error: Assertion failed (dims <= 2 && data && (unsigned)i0 < (unsigned)(s ize.p[0] * size.p[1])
|
||||||
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
|
&& elemSize() == (((((DataType<_Tp>::type) & ((512 - 1) << 3)) >> 3) + 1) << ((((sizeof(size_t)/4+1)16384|0x3a50)
|
||||||
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in cv::Mat::at,
|
>> ((DataType<_Tp>::typ e) & ((1 << 3) - 1))2) & 3))) in Mat::at,
|
||||||
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893
|
file C:\builds\master_PackSlave-w in32-vc12-shared\opencv\modules\core\include\opencv2/core/mat.inl.hpp, line 893
|
||||||
|
|
||||||
****Problem and Possible Fix*********************************************************************************************************
|
****Problem and Possible Fix*********************************************************************************************************
|
||||||
@@ -135,275 +138,279 @@ multiple lines in three dimensions as not all lines intersect in three dimension
|
|||||||
namespace cv
|
namespace cv
|
||||||
{
|
{
|
||||||
|
|
||||||
class DownhillSolverImpl : public DownhillSolver
|
class DownhillSolverImpl : public DownhillSolver
|
||||||
|
{
|
||||||
|
public:
|
||||||
|
DownhillSolverImpl()
|
||||||
{
|
{
|
||||||
public:
|
_Function=Ptr<Function>();
|
||||||
void getInitStep(OutputArray step) const;
|
_step=Mat_<double>();
|
||||||
void setInitStep(InputArray step);
|
|
||||||
Ptr<Function> getFunction() const;
|
|
||||||
void setFunction(const Ptr<Function>& f);
|
|
||||||
TermCriteria getTermCriteria() const;
|
|
||||||
DownhillSolverImpl();
|
|
||||||
void setTermCriteria(const TermCriteria& termcrit);
|
|
||||||
double minimize(InputOutputArray x);
|
|
||||||
protected:
|
|
||||||
Ptr<MinProblemSolver::Function> _Function;
|
|
||||||
TermCriteria _termcrit;
|
|
||||||
Mat _step;
|
|
||||||
Mat_<double> buf_x;
|
|
||||||
|
|
||||||
private:
|
|
||||||
inline void createInitialSimplex(Mat_<double>& simplex,Mat& step);
|
|
||||||
inline double innerDownhillSimplex(cv::Mat_<double>& p,double MinRange,double MinError,int& nfunk,
|
|
||||||
const Ptr<MinProblemSolver::Function>& f,int nmax);
|
|
||||||
inline double tryNewPoint(Mat_<double>& p,Mat_<double>& y,Mat_<double>& coord_sum,const Ptr<MinProblemSolver::Function>& f,int ihi,
|
|
||||||
double fac,Mat_<double>& ptry);
|
|
||||||
};
|
|
||||||
|
|
||||||
double DownhillSolverImpl::tryNewPoint(
|
|
||||||
Mat_<double>& p,
|
|
||||||
Mat_<double>& y,
|
|
||||||
Mat_<double>& coord_sum,
|
|
||||||
const Ptr<MinProblemSolver::Function>& f,
|
|
||||||
int ihi,
|
|
||||||
double fac,
|
|
||||||
Mat_<double>& ptry
|
|
||||||
)
|
|
||||||
{
|
|
||||||
int ndim=p.cols;
|
|
||||||
int j;
|
|
||||||
double fac1,fac2,ytry;
|
|
||||||
|
|
||||||
fac1=(1.0-fac)/ndim;
|
|
||||||
fac2=fac1-fac;
|
|
||||||
for (j=0;j<ndim;j++)
|
|
||||||
{
|
|
||||||
ptry(j)=coord_sum(j)*fac1-p(ihi,j)*fac2;
|
|
||||||
}
|
|
||||||
ytry=f->calc(ptry.ptr<double>());
|
|
||||||
if (ytry < y(ihi))
|
|
||||||
{
|
|
||||||
y(ihi)=ytry;
|
|
||||||
for (j=0;j<ndim;j++)
|
|
||||||
{
|
|
||||||
coord_sum(j) += ptry(j)-p(ihi,j);
|
|
||||||
p(ihi,j)=ptry(j);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return ytry;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
void getInitStep(OutputArray step) const { _step.copyTo(step); }
|
||||||
Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)
|
void setInitStep(InputArray step)
|
||||||
|
|
||||||
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
|
|
||||||
form a simplex - each row is an ndim vector.
|
|
||||||
On output, nfunk gives the number of function evaluations taken.
|
|
||||||
*/
|
|
||||||
double DownhillSolverImpl::innerDownhillSimplex(
|
|
||||||
cv::Mat_<double>& p,
|
|
||||||
double MinRange,
|
|
||||||
double MinError,
|
|
||||||
int& nfunk,
|
|
||||||
const Ptr<MinProblemSolver::Function>& f,
|
|
||||||
int nmax
|
|
||||||
)
|
|
||||||
{
|
{
|
||||||
int ndim=p.cols;
|
// set dimensionality and make a deep copy of step
|
||||||
double res;
|
Mat m = step.getMat();
|
||||||
int i,ihi,ilo,inhi,j,mpts=ndim+1;
|
dprintf(("m.cols=%d\nm.rows=%d\n", m.cols, m.rows));
|
||||||
double error, range,ysave,ytry;
|
CV_Assert( std::min(m.cols, m.rows) == 1 && m.type() == CV_64FC1 );
|
||||||
Mat_<double> coord_sum(1,ndim,0.0),buf(1,ndim,0.0),y(1,ndim+1,0.0);
|
if( m.rows == 1 )
|
||||||
|
m.copyTo(_step);
|
||||||
|
else
|
||||||
|
transpose(m, _step);
|
||||||
|
}
|
||||||
|
|
||||||
nfunk = 0;
|
Ptr<MinProblemSolver::Function> getFunction() const { return _Function; }
|
||||||
|
|
||||||
for(i=0;i<ndim+1;++i)
|
void setFunction(const Ptr<Function>& f) { _Function=f; }
|
||||||
|
|
||||||
|
TermCriteria getTermCriteria() const { return _termcrit; }
|
||||||
|
|
||||||
|
void setTermCriteria( const TermCriteria& termcrit )
|
||||||
|
{
|
||||||
|
CV_Assert( termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) &&
|
||||||
|
termcrit.epsilon > 0 &&
|
||||||
|
termcrit.maxCount > 0 );
|
||||||
|
_termcrit=termcrit;
|
||||||
|
}
|
||||||
|
|
||||||
|
double minimize( InputOutputArray x_ )
|
||||||
|
{
|
||||||
|
dprintf(("hi from minimize\n"));
|
||||||
|
CV_Assert( !_Function.empty() );
|
||||||
|
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
|
||||||
|
dprintf(("step\n"));
|
||||||
|
print_matrix(_step);
|
||||||
|
|
||||||
|
Mat x = x_.getMat();
|
||||||
|
Mat_<double> simplex;
|
||||||
|
|
||||||
|
createInitialSimplex(x, simplex, _step);
|
||||||
|
int count = 0;
|
||||||
|
double res = innerDownhillSimplex(simplex,_termcrit.epsilon, _termcrit.epsilon,
|
||||||
|
count, _Function, _termcrit.maxCount);
|
||||||
|
dprintf(("%d iterations done\n",count));
|
||||||
|
|
||||||
|
if( !x.empty() )
|
||||||
{
|
{
|
||||||
y(i) = f->calc(p[i]);
|
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
|
||||||
|
simplex_0m.convertTo(x, x.type());
|
||||||
}
|
}
|
||||||
|
else
|
||||||
nfunk = ndim+1;
|
|
||||||
|
|
||||||
reduce(p,coord_sum,0,CV_REDUCE_SUM);
|
|
||||||
|
|
||||||
for (;;)
|
|
||||||
{
|
{
|
||||||
ilo=0;
|
int x_type = x_.fixedType() ? x_.type() : CV_64F;
|
||||||
/* find highest (worst), next-to-worst, and lowest
|
simplex.row(0).convertTo(x_, x_type);
|
||||||
(best) points by going through all of them. */
|
}
|
||||||
ihi = y(0)>y(1) ? (inhi=1,0) : (inhi=0,1);
|
|
||||||
for (i=0;i<mpts;i++)
|
|
||||||
{
|
|
||||||
if (y(i) <= y(ilo))
|
|
||||||
ilo=i;
|
|
||||||
if (y(i) > y(ihi))
|
|
||||||
{
|
|
||||||
inhi=ihi;
|
|
||||||
ihi=i;
|
|
||||||
}
|
|
||||||
else if (y(i) > y(inhi) && i != ihi)
|
|
||||||
inhi=i;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* check stop criterion */
|
|
||||||
error=fabs(y(ihi)-y(ilo));
|
|
||||||
range=0;
|
|
||||||
for(i=0;i<ndim;++i)
|
|
||||||
{
|
|
||||||
double min = p(0,i);
|
|
||||||
double max = p(0,i);
|
|
||||||
double d;
|
|
||||||
for(j=1;j<=ndim;++j)
|
|
||||||
{
|
|
||||||
if( min > p(j,i) ) min = p(j,i);
|
|
||||||
if( max < p(j,i) ) max = p(j,i);
|
|
||||||
}
|
|
||||||
d = fabs(max-min);
|
|
||||||
if(range < d) range = d;
|
|
||||||
}
|
|
||||||
|
|
||||||
if(range <= MinRange || error <= MinError)
|
|
||||||
{ /* Put best point and value in first slot. */
|
|
||||||
std::swap(y(0),y(ilo));
|
|
||||||
for (i=0;i<ndim;i++)
|
|
||||||
{
|
|
||||||
std::swap(p(0,i),p(ilo,i));
|
|
||||||
}
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (nfunk >= nmax){
|
|
||||||
dprintf(("nmax exceeded\n"));
|
|
||||||
return y(ilo);
|
|
||||||
}
|
|
||||||
nfunk += 2;
|
|
||||||
/*Begin a new iteration. First, reflect the worst point about the centroid of others */
|
|
||||||
ytry = tryNewPoint(p,y,coord_sum,f,ihi,-1.0,buf);
|
|
||||||
if (ytry <= y(ilo))
|
|
||||||
{ /*If that's better than the best point, go twice as far in that direction*/
|
|
||||||
ytry = tryNewPoint(p,y,coord_sum,f,ihi,2.0,buf);
|
|
||||||
}
|
|
||||||
else if (ytry >= y(inhi))
|
|
||||||
{ /* The new point is worse than the second-highest, but better
|
|
||||||
than the worst so do not go so far in that direction */
|
|
||||||
ysave = y(ihi);
|
|
||||||
ytry = tryNewPoint(p,y,coord_sum,f,ihi,0.5,buf);
|
|
||||||
if (ytry >= ysave)
|
|
||||||
{ /* Can't seem to improve things. Contract the simplex to good point
|
|
||||||
in hope to find a simplex landscape. */
|
|
||||||
for (i=0;i<mpts;i++)
|
|
||||||
{
|
|
||||||
if (i != ilo)
|
|
||||||
{
|
|
||||||
for (j=0;j<ndim;j++)
|
|
||||||
{
|
|
||||||
p(i,j) = coord_sum(j) = 0.5*(p(i,j)+p(ilo,j));
|
|
||||||
}
|
|
||||||
y(i)=f->calc(coord_sum.ptr<double>());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
nfunk += ndim;
|
|
||||||
reduce(p,coord_sum,0,CV_REDUCE_SUM);
|
|
||||||
}
|
|
||||||
} else --(nfunk); /* correct nfunk */
|
|
||||||
dprintf(("this is simplex on iteration %d\n",nfunk));
|
|
||||||
print_matrix(p);
|
|
||||||
} /* go to next iteration. */
|
|
||||||
res = y(0);
|
|
||||||
|
|
||||||
return res;
|
return res;
|
||||||
}
|
}
|
||||||
|
protected:
|
||||||
|
Ptr<MinProblemSolver::Function> _Function;
|
||||||
|
TermCriteria _termcrit;
|
||||||
|
Mat _step;
|
||||||
|
|
||||||
void DownhillSolverImpl::createInitialSimplex(Mat_<double>& simplex,Mat& step){
|
inline void updateCoordSum(const Mat_<double>& p, Mat_<double>& coord_sum)
|
||||||
for(int i=1;i<=step.cols;++i)
|
{
|
||||||
|
int i, j, m = p.rows, n = p.cols;
|
||||||
|
double* coord_sum_ = coord_sum.ptr<double>();
|
||||||
|
CV_Assert( coord_sum.cols == n && coord_sum.rows == 1 );
|
||||||
|
|
||||||
|
for( j = 0; j < n; j++ )
|
||||||
|
coord_sum_[j] = 0.;
|
||||||
|
|
||||||
|
for( i = 0; i < m; i++ )
|
||||||
{
|
{
|
||||||
simplex.row(0).copyTo(simplex.row(i));
|
const double* p_i = p.ptr<double>(i);
|
||||||
simplex(i,i-1)+= 0.5*step.at<double>(0,i-1);
|
for( j = 0; j < n; j++ )
|
||||||
|
coord_sum_[j] += p_i[j];
|
||||||
}
|
}
|
||||||
simplex.row(0) -= 0.5*step;
|
}
|
||||||
|
|
||||||
|
inline void createInitialSimplex( const Mat& x0, Mat_<double>& simplex, Mat& step )
|
||||||
|
{
|
||||||
|
int i, j, ndim = step.cols;
|
||||||
|
Mat x = x0;
|
||||||
|
if( x0.empty() )
|
||||||
|
x = Mat::zeros(1, ndim, CV_64F);
|
||||||
|
CV_Assert( (x.cols == 1 && x.rows == ndim) || (x.cols == ndim && x.rows == 1) );
|
||||||
|
CV_Assert( x.type() == CV_32F || x.type() == CV_64F );
|
||||||
|
|
||||||
|
simplex.create(ndim + 1, ndim);
|
||||||
|
Mat simplex_0m(x.rows, x.cols, CV_64F, simplex.ptr<double>());
|
||||||
|
|
||||||
|
x.convertTo(simplex_0m, CV_64F);
|
||||||
|
double* simplex_0 = simplex.ptr<double>();
|
||||||
|
const double* step_ = step.ptr<double>();
|
||||||
|
for( i = 1; i <= ndim; i++ )
|
||||||
|
{
|
||||||
|
double* simplex_i = simplex.ptr<double>(i);
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
simplex_i[j] = simplex_0[j];
|
||||||
|
simplex_i[i-1] += 0.5*step_[i-1];
|
||||||
|
}
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
simplex_0[j] -= 0.5*step_[j];
|
||||||
|
|
||||||
dprintf(("this is simplex\n"));
|
dprintf(("this is simplex\n"));
|
||||||
print_matrix(simplex);
|
print_matrix(simplex);
|
||||||
}
|
}
|
||||||
|
|
||||||
double DownhillSolverImpl::minimize(InputOutputArray x){
|
/*
|
||||||
dprintf(("hi from minimize\n"));
|
Performs the actual minimization of MinProblemSolver::Function f (after the initialization was done)
|
||||||
CV_Assert(_Function.empty()==false);
|
|
||||||
dprintf(("termcrit:\n\ttype: %d\n\tmaxCount: %d\n\tEPS: %g\n",_termcrit.type,_termcrit.maxCount,_termcrit.epsilon));
|
|
||||||
dprintf(("step\n"));
|
|
||||||
print_matrix(_step);
|
|
||||||
|
|
||||||
Mat x_mat=x.getMat();
|
The matrix p[ndim+1][1..ndim] represents ndim+1 vertices that
|
||||||
CV_Assert(MIN(x_mat.rows,x_mat.cols)==1);
|
form a simplex - each row is an ndim vector.
|
||||||
CV_Assert(MAX(x_mat.rows,x_mat.cols)==_step.cols);
|
On output, nfunk gives the number of function evaluations taken.
|
||||||
CV_Assert(x_mat.type()==CV_64FC1);
|
*/
|
||||||
|
double innerDownhillSimplex( Mat_<double>& p,double MinRange,double MinError, int& nfunk,
|
||||||
|
const Ptr<MinProblemSolver::Function>& f, int nmax )
|
||||||
|
{
|
||||||
|
int i, j, ndim = p.cols;
|
||||||
|
Mat_<double> coord_sum(1, ndim), buf(1, ndim), y(1, ndim+1);
|
||||||
|
double* y_ = y.ptr<double>();
|
||||||
|
|
||||||
Mat_<double> proxy_x;
|
nfunk = 0;
|
||||||
|
|
||||||
if(x_mat.rows>1){
|
for( i = 0; i <= ndim; i++ )
|
||||||
buf_x.create(1,_step.cols);
|
y_[i] = f->calc(p[i]);
|
||||||
Mat_<double> proxy(_step.cols,1,buf_x.ptr<double>());
|
|
||||||
x_mat.copyTo(proxy);
|
nfunk = ndim+1;
|
||||||
proxy_x=buf_x;
|
updateCoordSum(p, coord_sum);
|
||||||
}else{
|
|
||||||
proxy_x=x_mat;
|
for (;;)
|
||||||
|
{
|
||||||
|
/* find highest (worst), next-to-worst, and lowest
|
||||||
|
(best) points by going through all of them. */
|
||||||
|
int ilo = 0, ihi, inhi;
|
||||||
|
if( y_[0] > y_[1] )
|
||||||
|
{
|
||||||
|
ihi = 0; inhi = 1;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
ihi = 1; inhi = 0;
|
||||||
|
}
|
||||||
|
for( i = 0; i <= ndim; i++ )
|
||||||
|
{
|
||||||
|
double yval = y_[i];
|
||||||
|
if (yval <= y_[ilo])
|
||||||
|
ilo = i;
|
||||||
|
if (yval > y_[ihi])
|
||||||
|
{
|
||||||
|
inhi = ihi;
|
||||||
|
ihi = i;
|
||||||
|
}
|
||||||
|
else if (yval > y_[inhi] && i != ihi)
|
||||||
|
inhi = i;
|
||||||
|
}
|
||||||
|
CV_Assert( ilo != ihi && ilo != inhi && ihi != inhi );
|
||||||
|
dprintf(("this is y on iteration %d:\n",nfunk));
|
||||||
|
print_matrix(y);
|
||||||
|
|
||||||
|
/* check stop criterion */
|
||||||
|
double error = fabs(y_[ihi] - y_[ilo]);
|
||||||
|
double range = 0;
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
{
|
||||||
|
double minval, maxval;
|
||||||
|
minval = maxval = p(0, j);
|
||||||
|
for( i = 1; i <= ndim; i++ )
|
||||||
|
{
|
||||||
|
double pval = p(i, j);
|
||||||
|
minval = std::min(minval, pval);
|
||||||
|
maxval = std::max(maxval, pval);
|
||||||
|
}
|
||||||
|
range = std::max(range, fabs(maxval - minval));
|
||||||
|
}
|
||||||
|
|
||||||
|
if( range <= MinRange || error <= MinError || nfunk >= nmax )
|
||||||
|
{
|
||||||
|
/* Put best point and value in first slot. */
|
||||||
|
std::swap(y(0), y(ilo));
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
{
|
||||||
|
std::swap(p(0, j), p(ilo, j));
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
nfunk += 2;
|
||||||
|
|
||||||
|
double ylo = y_[ilo], ynhi = y_[inhi];
|
||||||
|
/* Begin a new iteration. First, reflect the worst point about the centroid of others */
|
||||||
|
double ytry = tryNewPoint(p, y, coord_sum, f, ihi, -1.0, buf);
|
||||||
|
if( ytry <= ylo )
|
||||||
|
{
|
||||||
|
/* If that's better than the best point, go twice as far in that direction */
|
||||||
|
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 2.0, buf);
|
||||||
|
}
|
||||||
|
else if( ytry >= ynhi )
|
||||||
|
{
|
||||||
|
/* The new point is worse than the second-highest,
|
||||||
|
do not go so far in that direction */
|
||||||
|
double ysave = y(ihi);
|
||||||
|
ytry = tryNewPoint(p, y, coord_sum, f, ihi, 0.5, buf);
|
||||||
|
if (ytry >= ysave)
|
||||||
|
{
|
||||||
|
/* Can't seem to improve things. Contract the simplex to good point
|
||||||
|
in hope to find a simplex landscape. */
|
||||||
|
for( i = 0; i <= ndim; i++ )
|
||||||
|
{
|
||||||
|
if (i != ilo)
|
||||||
|
{
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
p(i,j) = 0.5*(p(i,j) + p(ilo,j));
|
||||||
|
y(i)=f->calc(p.ptr<double>(i));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
nfunk += ndim;
|
||||||
|
updateCoordSum(p, coord_sum);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else --(nfunk); /* correct nfunk */
|
||||||
|
dprintf(("this is simplex on iteration %d\n",nfunk));
|
||||||
|
print_matrix(p);
|
||||||
|
} /* go to next iteration. */
|
||||||
|
return y(0);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline double tryNewPoint(Mat_<double>& p, Mat_<double>& y, Mat_<double>& coord_sum,
|
||||||
|
const Ptr<MinProblemSolver::Function>& f, int ihi,
|
||||||
|
double fac, Mat_<double>& ptry)
|
||||||
|
{
|
||||||
|
int j, ndim = p.cols;
|
||||||
|
|
||||||
|
double fac1 = (1.0 - fac)/ndim;
|
||||||
|
double fac2 = fac1 - fac;
|
||||||
|
double* p_ihi = p.ptr<double>(ihi);
|
||||||
|
double* ptry_ = ptry.ptr<double>();
|
||||||
|
double* coord_sum_ = coord_sum.ptr<double>();
|
||||||
|
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
ptry_[j] = coord_sum_[j]*fac1 - p_ihi[j]*fac2;
|
||||||
|
|
||||||
|
double ytry = f->calc(ptry_);
|
||||||
|
if (ytry < y(ihi))
|
||||||
|
{
|
||||||
|
y(ihi) = ytry;
|
||||||
|
for( j = 0; j < ndim; j++ )
|
||||||
|
p_ihi[j] = ptry_[j];
|
||||||
|
updateCoordSum(p, coord_sum);
|
||||||
}
|
}
|
||||||
|
|
||||||
int count=0;
|
return ytry;
|
||||||
int ndim=_step.cols;
|
}
|
||||||
Mat_<double> simplex=Mat_<double>(ndim+1,ndim,0.0);
|
};
|
||||||
|
|
||||||
proxy_x.copyTo(simplex.row(0));
|
|
||||||
createInitialSimplex(simplex,_step);
|
|
||||||
double res = innerDownhillSimplex(
|
|
||||||
simplex,_termcrit.epsilon, _termcrit.epsilon, count,_Function,_termcrit.maxCount);
|
|
||||||
simplex.row(0).copyTo(proxy_x);
|
|
||||||
|
|
||||||
dprintf(("%d iterations done\n",count));
|
// both minRange & minError are specified by termcrit.epsilon;
|
||||||
|
// In addition, user may specify the number of iterations that the algorithm does.
|
||||||
if(x_mat.rows>1){
|
Ptr<DownhillSolver> DownhillSolver::create( const Ptr<MinProblemSolver::Function>& f,
|
||||||
Mat(x_mat.rows, 1, CV_64F, proxy_x.ptr<double>()).copyTo(x);
|
InputArray initStep, TermCriteria termcrit )
|
||||||
}
|
{
|
||||||
return res;
|
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
|
||||||
}
|
DS->setFunction(f);
|
||||||
DownhillSolverImpl::DownhillSolverImpl(){
|
DS->setInitStep(initStep);
|
||||||
_Function=Ptr<Function>();
|
DS->setTermCriteria(termcrit);
|
||||||
_step=Mat_<double>();
|
return DS;
|
||||||
}
|
}
|
||||||
Ptr<MinProblemSolver::Function> DownhillSolverImpl::getFunction()const{
|
|
||||||
return _Function;
|
|
||||||
}
|
|
||||||
void DownhillSolverImpl::setFunction(const Ptr<Function>& f){
|
|
||||||
_Function=f;
|
|
||||||
}
|
|
||||||
TermCriteria DownhillSolverImpl::getTermCriteria()const{
|
|
||||||
return _termcrit;
|
|
||||||
}
|
|
||||||
void DownhillSolverImpl::setTermCriteria(const TermCriteria& termcrit){
|
|
||||||
CV_Assert(termcrit.type==(TermCriteria::MAX_ITER+TermCriteria::EPS) && termcrit.epsilon>0 && termcrit.maxCount>0);
|
|
||||||
_termcrit=termcrit;
|
|
||||||
}
|
|
||||||
// both minRange & minError are specified by termcrit.epsilon; In addition, user may specify the number of iterations that the algorithm does.
|
|
||||||
Ptr<DownhillSolver> DownhillSolver::create(const Ptr<MinProblemSolver::Function>& f, InputArray initStep, TermCriteria termcrit){
|
|
||||||
Ptr<DownhillSolver> DS = makePtr<DownhillSolverImpl>();
|
|
||||||
DS->setFunction(f);
|
|
||||||
DS->setInitStep(initStep);
|
|
||||||
DS->setTermCriteria(termcrit);
|
|
||||||
return DS;
|
|
||||||
}
|
|
||||||
void DownhillSolverImpl::getInitStep(OutputArray step)const{
|
|
||||||
_step.copyTo(step);
|
|
||||||
}
|
|
||||||
void DownhillSolverImpl::setInitStep(InputArray step){
|
|
||||||
//set dimensionality and make a deep copy of step
|
|
||||||
Mat m=step.getMat();
|
|
||||||
dprintf(("m.cols=%d\nm.rows=%d\n",m.cols,m.rows));
|
|
||||||
CV_Assert(MIN(m.cols,m.rows)==1 && m.type()==CV_64FC1);
|
|
||||||
if(m.rows==1){
|
|
||||||
m.copyTo(_step);
|
|
||||||
}else{
|
|
||||||
transpose(m,_step);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
Reference in New Issue
Block a user