Merge pull request #1902 from ilya-lavrenov:tapi_arithm

This commit is contained in:
Andrey Pavlenko 2013-12-04 11:34:34 +04:00 committed by OpenCV Buildbot
commit 001aa70556
10 changed files with 1422 additions and 41 deletions

View File

@ -929,11 +929,11 @@ static bool ocl_binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
int srcdepth = CV_MAT_DEPTH(srctype);
int cn = CV_MAT_CN(srctype);
if( oclop < 0 || ((haveMask || haveScalar) && cn > 4) )
return false;
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
UMat src1 = _src1.getUMat(), src2;
UMat dst = _dst.getUMat(), mask = _mask.getUMat();
if( oclop < 0 || ((haveMask || haveScalar) && (cn > 4 || cn == 3)) ||
(!doubleSupport && srcdepth == CV_64F))
return false;
char opts[1024];
int kercn = haveMask || haveScalar ? cn : 1;
@ -946,6 +946,9 @@ static bool ocl_binary_op(InputArray _src1, InputArray _src2, OutputArray _dst,
if( k.empty() )
return false;
UMat src1 = _src1.getUMat(), src2;
UMat dst = _dst.getUMat(), mask = _mask.getUMat();
int cscale = cn/kercn;
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cscale);
ocl::KernelArg dstarg = haveMask ? ocl::KernelArg::ReadWrite(dst, cscale) :
@ -1280,24 +1283,28 @@ static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
void* usrdata, int oclop,
bool haveScalar )
{
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
int type1 = _src1.type(), depth1 = CV_MAT_DEPTH(type1), cn = CV_MAT_CN(type1);
bool haveMask = !_mask.empty();
if( ((haveMask || haveScalar) && cn > 4) || cn == 3) // TODO need fix for 3 channels
if( ((haveMask || haveScalar) && (cn > 4 || cn == 3)) )
return false;
int dtype = _dst.type(), ddepth = CV_MAT_DEPTH(dtype), wdepth = std::max(CV_32S, CV_MAT_DEPTH(wtype));
if (!doubleSupport)
wdepth = std::min(wdepth, CV_32F);
wtype = CV_MAKETYPE(wdepth, cn);
int type2 = haveScalar ? wtype : _src2.type(), depth2 = CV_MAT_DEPTH(type2);
int kercn = haveMask || haveScalar ? cn : 1;
if (!doubleSupport && (depth2 == CV_64F || depth1 == CV_64F))
return false;
UMat src1 = _src1.getUMat(), src2;
UMat dst = _dst.getUMat(), mask = _mask.getUMat();
int kercn = haveMask || haveScalar ? cn : 1;
char cvtstr[3][32], opts[1024];
sprintf(opts, "-D %s%s -D %s -D srcT1=%s -D srcT2=%s "
"-D dstT=%s -D workT=%s -D convertToWT1=%s "
"-D convertToWT2=%s -D convertToDT=%s",
"-D convertToWT2=%s -D convertToDT=%s%s",
(haveMask ? "MASK_" : ""), (haveScalar ? "UNARY_OP" : "BINARY_OP"),
oclop2str[oclop], ocl::typeToStr(CV_MAKETYPE(depth1, kercn)),
ocl::typeToStr(CV_MAKETYPE(depth2, kercn)),
@ -1305,7 +1312,8 @@ static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
ocl::typeToStr(CV_MAKETYPE(wdepth, kercn)),
ocl::convertTypeStr(depth1, wdepth, kercn, cvtstr[0]),
ocl::convertTypeStr(depth2, wdepth, kercn, cvtstr[1]),
ocl::convertTypeStr(wdepth, ddepth, kercn, cvtstr[2]));
ocl::convertTypeStr(wdepth, ddepth, kercn, cvtstr[2]),
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
const uchar* usrdata_p = (const uchar*)usrdata;
const double* usrdata_d = (const double*)usrdata;
@ -1323,6 +1331,9 @@ static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
if( k.empty() )
return false;
UMat src1 = _src1.getUMat(), src2;
UMat dst = _dst.getUMat(), mask = _mask.getUMat();
int cscale = cn/kercn;
ocl::KernelArg src1arg = ocl::KernelArg::ReadOnlyNoSize(src1, cscale);
@ -1337,9 +1348,7 @@ static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
Mat src2sc = _src2.getMat();
if( !src2sc.empty() )
{
convertAndUnrollScalar(src2sc, wtype, (uchar*)buf, 1);
}
ocl::KernelArg scalararg = ocl::KernelArg(0, 0, 0, buf, esz);
if( !haveMask )
@ -1369,12 +1378,10 @@ static bool ocl_arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
CV_Error(Error::StsNotImplemented, "unsupported number of extra parameters");
}
else
{
k.args(src1arg, src2arg, maskarg, dstarg);
}
}
size_t globalsize[] = { src1.cols*cscale, src1.rows };
size_t globalsize[] = { src1.cols * cscale, src1.rows };
return k.run(2, globalsize, NULL, false);
}
@ -2075,7 +2082,7 @@ void cv::multiply(InputArray src1, InputArray src2,
OutputArray dst, double scale, int dtype)
{
arithm_op(src1, src2, dst, noArray(), dtype, getMulTab(),
true, &scale, scale == 1. ? OCL_OP_MUL : OCL_OP_MUL_SCALE);
true, &scale, std::abs(scale - 1.0) < DBL_EPSILON ? OCL_OP_MUL : OCL_OP_MUL_SCALE);
}
void cv::divide(InputArray src1, InputArray src2,
@ -2581,6 +2588,42 @@ static double getMaxVal(int depth)
return tab[depth];
}
static bool ocl_compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
{
if ( !((_src1.isMat() || _src1.isUMat()) && (_src2.isMat() || _src2.isUMat())) )
return false;
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type), type2 = _src2.type();
if (!doubleSupport && (depth == CV_64F || _src2.depth() == CV_64F))
return false;
const char * const operationMap[] = { "==", ">", ">=", "<", "<=", "!=" };
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D BINARY_OP -D srcT1=%s -D workT=srcT1"
" -D OP_CMP -D CMP_OPERATOR=%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
operationMap[op],
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
CV_Assert(type == type2);
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat();
Size size = src1.size();
CV_Assert(size == src2.size());
_dst.create(size, CV_8UC(cn));
UMat dst = _dst.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src1),
ocl::KernelArg::ReadOnlyNoSize(src2),
ocl::KernelArg::WriteOnly(dst, cn));
size_t globalsize[2] = { dst.cols * cn, dst.rows };
return k.run(2, globalsize, NULL, false);
}
}
void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
@ -2588,6 +2631,10 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
CV_Assert( op == CMP_LT || op == CMP_LE || op == CMP_EQ ||
op == CMP_NE || op == CMP_GE || op == CMP_GT );
if (ocl::useOpenCL() && _src1.dims() <= 2 && _src2.dims() <= 2 && _dst.isUMat() &&
ocl_compare(_src1, _src2, _dst, op))
return;
int kind1 = _src1.kind(), kind2 = _src2.kind();
Mat src1 = _src1.getMat(), src2 = _src2.getMat();

View File

@ -497,10 +497,49 @@ void phase( InputArray src1, InputArray src2, OutputArray dst, bool angleInDegre
}
}
static bool ocl_cartToPolar( InputArray _src1, InputArray _src2,
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees )
{
int type = _src1.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !(_src1.dims() <= 2 && _src2.dims() <= 2 &&
(depth == CV_32F || depth == CV_64F) && type == _src2.type()) ||
(depth == CV_64F && !doubleSupport) )
return false;
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D BINARY_OP -D dstT=%s -D OP_CTP_%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
angleInDegrees ? "AD" : "AR",
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat src1 = _src1.getUMat(), src2 = _src2.getUMat();
Size size = src1.size();
CV_Assert( size == src2.size() );
_dst1.create(size, type);
_dst2.create(size, type);
UMat dst1 = _dst1.getUMat(), dst2 = _dst2.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(src1),
ocl::KernelArg::ReadOnlyNoSize(src2),
ocl::KernelArg::WriteOnly(dst1, cn),
ocl::KernelArg::WriteOnlyNoSize(dst2));
size_t globalsize[2] = { dst1.cols * cn, dst1.rows };
return k.run(2, globalsize, NULL, false);
}
void cartToPolar( InputArray src1, InputArray src2,
OutputArray dst1, OutputArray dst2, bool angleInDegrees )
{
if (ocl::useOpenCL() && dst1.isUMat() && dst2.isUMat() &&
ocl_cartToPolar(src1, src2, dst1, dst2, angleInDegrees))
return;
Mat X = src1.getMat(), Y = src2.getMat();
int type = X.type(), depth = X.depth(), cn = X.channels();
CV_Assert( X.size == Y.size && type == Y.type() && (depth == CV_32F || depth == CV_64F));
@ -644,12 +683,50 @@ static void SinCos_32f( const float *angle, float *sinval, float* cosval,
}
static bool ocl_polarToCart( InputArray _mag, InputArray _angle,
OutputArray _dst1, OutputArray _dst2, bool angleInDegrees )
{
int type = _angle.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !doubleSupport && depth == CV_64F )
return false;
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D dstT=%s -D BINARY_OP -D OP_PTC_%s%s",
ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
angleInDegrees ? "AD" : "AR",
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat mag = _mag.getUMat(), angle = _angle.getUMat();
Size size = angle.size();
CV_Assert(mag.size() == size);
_dst1.create(size, type);
_dst2.create(size, type);
UMat dst1 = _dst1.getUMat(), dst2 = _dst2.getUMat();
k.args(ocl::KernelArg::ReadOnlyNoSize(mag), ocl::KernelArg::ReadOnlyNoSize(angle),
ocl::KernelArg::WriteOnly(dst1, cn), ocl::KernelArg::WriteOnlyNoSize(dst2));
size_t globalsize[2] = { dst1.cols * cn, dst1.rows };
return k.run(2, globalsize, NULL, false);
}
void polarToCart( InputArray src1, InputArray src2,
OutputArray dst1, OutputArray dst2, bool angleInDegrees )
{
int type = src2.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
CV_Assert((depth == CV_32F || depth == CV_64F) && (src1.empty() || src1.type() == type));
if (ocl::useOpenCL() && !src1.empty() && src2.dims() <= 2 && dst1.isUMat() && dst2.isUMat() &&
ocl_polarToCart(src1, src2, dst1, dst2, angleInDegrees))
return;
Mat Mag = src1.getMat(), Angle = src2.getMat();
int type = Angle.type(), depth = Angle.depth(), cn = Angle.channels();
CV_Assert( Mag.empty() || (Angle.size == Mag.size && type == Mag.type() && (depth == CV_32F || depth == CV_64F)));
CV_Assert( Mag.empty() || Angle.size == Mag.size);
dst1.create( Angle.dims, Angle.size, type );
dst2.create( Angle.dims, Angle.size, type );
Mat X = dst1.getMat(), Y = dst2.getMat();
@ -1955,9 +2032,42 @@ static IPowFunc ipowTab[] =
(IPowFunc)iPow32s, (IPowFunc)iPow32f, (IPowFunc)iPow64f, 0
};
static bool ocl_pow(InputArray _src, double power, OutputArray _dst)
{
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( !(_src.dims() <= 2 && (depth == CV_32F || depth == CV_64F)) ||
(depth == CV_64F && !doubleSupport) )
return false;
ocl::Kernel k("KF", ocl::core::arithm_oclsrc,
format("-D dstT=%s -D OP_POW -D UNARY_OP%s", ocl::typeToStr(CV_MAKE_TYPE(depth, 1)),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat src = _src.getUMat();
_dst.create(src.size(), type);
UMat dst = _dst.getUMat();
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
dstarg = ocl::KernelArg::WriteOnly(dst, cn);
if (depth == CV_32F)
k.args(srcarg, dstarg, (float)power);
else
k.args(srcarg, dstarg, power);
size_t globalsize[2] = { dst.cols * cn, dst.rows };
return k.run(2, globalsize, NULL, false);
}
void pow( InputArray _src, double power, OutputArray _dst )
{
if (ocl::useOpenCL() && _dst.isUMat() && ocl_pow(_src, power, _dst))
return;
Mat src = _src.getMat();
int type = src.type(), depth = src.depth(), cn = src.channels();

View File

@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
/****************************************************************************************\
* [scaled] Identity matrix initialization *
@ -2368,10 +2369,37 @@ void cv::vconcat(InputArray _src, OutputArray dst)
}
//////////////////////////////////////// set identity ////////////////////////////////////////////
namespace cv {
static bool ocl_setIdentity( InputOutputArray _m, const Scalar& s )
{
int type = _m.type(), cn = CV_MAT_CN(type);
if (cn == 3)
return false;
ocl::Kernel k("setIdentity", ocl::core::set_identity_oclsrc,
format("-D T=%s", ocl::memopTypeToStr(type)));
if (k.empty())
return false;
UMat m = _m.getUMat();
k.args(ocl::KernelArg::WriteOnly(m), ocl::KernelArg::Constant(Mat(1, 1, type, s)));
size_t globalsize[2] = { m.cols, m.rows };
return k.run(2, globalsize, NULL, false);
}
}
void cv::setIdentity( InputOutputArray _m, const Scalar& s )
{
CV_Assert( _m.dims() <= 2 );
if (ocl::useOpenCL() && _m.isUMat() && ocl_setIdentity(_m, s))
return;
Mat m = _m.getMat();
CV_Assert( m.dims <= 2 );
int i, j, rows = m.rows, cols = m.cols, type = m.type();
if( type == CV_32FC1 )
@ -2548,18 +2576,63 @@ static TransposeInplaceFunc transposeInplaceTab[] =
0, 0, 0, 0, 0, 0, 0, transposeI_32sC6, 0, 0, 0, 0, 0, 0, 0, transposeI_32sC8
};
static inline int divUp(int a, int b)
{
return (a + b - 1) / b;
}
static bool ocl_transpose( InputArray _src, OutputArray _dst )
{
const int TILE_DIM = 32, BLOCK_ROWS = 8;
int type = _src.type(), cn = CV_MAT_CN(type);
if (cn == 3)
return false;
UMat src = _src.getUMat();
_dst.create(src.cols, src.rows, type);
UMat dst = _dst.getUMat();
String kernelName("transpose");
bool inplace = dst.u == src.u;
if (inplace)
{
CV_Assert(dst.cols == dst.rows);
kernelName += "_inplace";
}
ocl::Kernel k(kernelName.c_str(), ocl::core::transpose_oclsrc,
format("-D T=%s -D TILE_DIM=%d -D BLOCK_ROWS=%d",
ocl::memopTypeToStr(type), TILE_DIM, BLOCK_ROWS));
if (inplace)
k.args(ocl::KernelArg::ReadWriteNoSize(dst), dst.rows);
else
k.args(ocl::KernelArg::ReadOnly(src),
ocl::KernelArg::WriteOnlyNoSize(dst));
size_t localsize[3] = { TILE_DIM, BLOCK_ROWS, 1 };
size_t globalsize[3] = { src.cols, inplace ? src.rows : divUp(src.rows, TILE_DIM) * BLOCK_ROWS, 1 };
return k.run(2, globalsize, localsize, false);
}
}
void cv::transpose( InputArray _src, OutputArray _dst )
{
int type = _src.type(), esz = CV_ELEM_SIZE(type);
CV_Assert( _src.dims() <= 2 && esz <= 32 );
if (ocl::useOpenCL() && _dst.isUMat() && ocl_transpose(_src, _dst))
return;
Mat src = _src.getMat();
if( src.empty() )
{
_dst.release();
return;
}
size_t esz = src.elemSize();
CV_Assert( src.dims <= 2 && esz <= (size_t)32 );
_dst.create(src.cols, src.rows, src.type());
Mat dst = _dst.getMat();
@ -2576,6 +2649,7 @@ void cv::transpose( InputArray _src, OutputArray _dst )
{
TransposeInplaceFunc func = transposeInplaceTab[esz];
CV_Assert( func != 0 );
CV_Assert( dst.cols == dst.rows );
func( dst.data, dst.step, dst.rows );
}
else

View File

@ -3145,7 +3145,7 @@ const char* memopTypeToStr(int t)
"ushort", "ushort2", "ushort3", "ushort4",
"int", "int2", "int3", "int4",
"int", "int2", "int3", "int4",
"long", "long2", "long3", "long4",
"int2", "int4", "?", "int8",
"?", "?", "?", "?"
};
int cn = CV_MAT_CN(t);

View File

@ -57,19 +57,22 @@
-D workDepth=<work depth> [-D cn=<num channels>]" - for mixed-type operations
*/
#if defined (DOUBLE_SUPPORT)
#ifdef DOUBLE_SUPPORT
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#elif defined (cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#endif
#define CV_EPSILON DBL_EPSILON
#define CV_PI M_PI
#else
#define CV_EPSILON FLT_EPSILON
#define CV_PI M_PI_F
#endif
#define CV_32S 4
#define CV_32F 5
#define dstelem *(__global dstT*)(dstptr + dst_index)
#define noconvert(x) x
#define dstelem2 *(__global dstT*)(dstptr2 + dst_index2)
#define noconvert
#ifndef workT
@ -88,6 +91,7 @@
#endif
#define EXTRA_PARAMS
#define EXTRA_INDEX
#if defined OP_ADD
#define PROCESS_ELEM dstelem = convertToDT(srcelem1 + srcelem2)
@ -99,7 +103,9 @@
#define PROCESS_ELEM dstelem = convertToDT(srcelem2 - srcelem1)
#elif defined OP_ABSDIFF
#define PROCESS_ELEM dstelem = abs_diff(srcelem1, srcelem2)
#define PROCESS_ELEM \
workT v = srcelem1 - srcelem2; \
dstelem = convertToDT(v >= (workT)(0) ? v : -v);
#elif defined OP_AND
#define PROCESS_ELEM dstelem = srcelem1 & srcelem2
@ -169,6 +175,9 @@
#elif defined OP_EXP
#define PROCESS_ELEM dstelem = exp(srcelem1)
#elif defined OP_POW
#define PROCESS_ELEM dstelem = pow(srcelem1, srcelem2)
#elif defined OP_SQRT
#define PROCESS_ELEM dstelem = sqrt(srcelem1)
@ -178,6 +187,10 @@ dstT v = (dstT)(srcelem1);\
dstelem = v > (dstT)(0) ? log(v) : log(-v)
#elif defined OP_CMP
#define dstT uchar
#define srcT2 srcT1
#define convertToWT1
#define convertToWT2
#define PROCESS_ELEM dstelem = convert_uchar(srcelem1 CMP_OPERATOR srcelem2 ? 255 : 0)
#elif defined OP_CONVERT
@ -188,15 +201,55 @@ dstelem = v > (dstT)(0) ? log(v) : log(-v)
#define EXTRA_PARAMS , workT alpha, workT beta
#define PROCESS_ELEM dstelem = convertToDT(srcelem1*alpha + beta)
#elif defined OP_CTP_AD || defined OP_CTP_AR
#ifdef OP_CTP_AD
#define TO_DEGREE cartToPolar *= (180 / CV_PI);
#elif defined OP_CTP_AR
#define TO_DEGREE
#endif
#define PROCESS_ELEM \
dstT x = srcelem1, y = srcelem2; \
dstT x2 = x * x, y2 = y * y; \
dstT magnitude = sqrt(x2 + y2); \
dstT tmp = y >= 0 ? 0 : CV_PI * 2; \
tmp = x < 0 ? CV_PI : tmp; \
dstT tmp1 = y >= 0 ? CV_PI * 0.5f : CV_PI * 1.5f; \
dstT cartToPolar = y2 <= x2 ? x * y / (x2 + 0.28f * y2 + CV_EPSILON) + tmp : (tmp1 - x * y / (y2 + 0.28f * x2 + CV_EPSILON)); \
TO_DEGREE \
dstelem = magnitude; \
dstelem2 = cartToPolar
#elif defined OP_PTC_AD || defined OP_PTC_AR
#ifdef OP_PTC_AD
#define FROM_DEGREE \
dstT ascale = CV_PI/180.0f; \
dstT alpha = y * ascale
#else
#define FROM_DEGREE \
dstT alpha = y
#endif
#define PROCESS_ELEM \
dstT x = srcelem1, y = srcelem2; \
FROM_DEGREE; \
dstelem = cos(alpha) * x; \
dstelem2 = sin(alpha) * x
#else
#error "unknown op type"
#endif
#if defined OP_CTP_AD || defined OP_CTP_AR || defined OP_PTC_AD || defined OP_PTC_AR
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , __global uchar* dstptr2, int dststep2, int dstoffset2
#undef EXTRA_INDEX
#define EXTRA_INDEX int dst_index2 = mad24(y, dststep2, x*(int)sizeof(dstT) + dstoffset2)
#endif
#if defined UNARY_OP || defined MASK_UNARY_OP
#undef srcelem2
#if defined OP_AND || defined OP_OR || defined OP_XOR || defined OP_ADD || defined OP_SAT_ADD || \
defined OP_SUB || defined OP_SAT_SUB || defined OP_RSUB || defined OP_SAT_RSUB || \
defined OP_ABSDIFF || defined OP_CMP || defined OP_MIN || defined OP_MAX
defined OP_ABSDIFF || defined OP_CMP || defined OP_MIN || defined OP_MAX || defined OP_POW
#undef EXTRA_PARAMS
#define EXTRA_PARAMS , workT srcelem2
#endif
@ -217,6 +270,7 @@ __kernel void KF(__global const uchar* srcptr1, int srcstep1, int srcoffset1,
int src1_index = mad24(y, srcstep1, x*(int)sizeof(srcT1) + srcoffset1);
int src2_index = mad24(y, srcstep2, x*(int)sizeof(srcT2) + srcoffset2);
int dst_index = mad24(y, dststep, x*(int)sizeof(dstT) + dstoffset);
EXTRA_INDEX;
PROCESS_ELEM;
}
@ -260,6 +314,7 @@ __kernel void KF(__global const uchar* srcptr1, int srcstep1, int srcoffset1,
{
int src1_index = mad24(y, srcstep1, x*(int)sizeof(srcT1) + srcoffset1);
int dst_index = mad24(y, dststep, x*(int)sizeof(dstT) + dstoffset);
EXTRA_INDEX;
PROCESS_ELEM;
}

View File

@ -0,0 +1,130 @@
////////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Shengen Yan,yanshengen@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#define noconvert
#if defined OP_SUM || defined OP_SUM_ABS || defined OP_SUM_SQR
#if OP_SUM
#define FUNC(a, b) a += b
#elif OP_SUM_ABS
#define FUNC(a, b) a += b >= (dstT)(0) ? b : -b
#elif OP_SUM_SQR
#define FUNC(a, b) a += b * b
#endif
#define DEFINE_ACCUMULATOR \
dstT accumulator = (dstT)(0)
#define REDUCE_GLOBAL \
dstT temp = convertToDT(src[0]); \
FUNC(accumulator, temp)
#define REDUCE_LOCAL_1 \
localmem[lid - WGS2_ALIGNED] += accumulator
#define REDUCE_LOCAL_2 \
localmem[lid] += localmem[lid2]
#elif defined OP_COUNT_NON_ZERO
#define dstT int
#define DEFINE_ACCUMULATOR \
dstT accumulator = (dstT)(0); \
srcT zero = (srcT)(0), one = (srcT)(1)
#define REDUCE_GLOBAL \
accumulator += src[0] == zero ? zero : one
#define REDUCE_LOCAL_1 \
localmem[lid - WGS2_ALIGNED] += accumulator
#define REDUCE_LOCAL_2 \
localmem[lid] += localmem[lid2]
#else
#error "No operation"
#endif
__kernel void reduce(__global const uchar * srcptr, int step, int offset, int cols,
int total, int groupnum, __global uchar * dstptr)
{
int lid = get_local_id(0);
int gid = get_group_id(0);
int id = get_global_id(0);
__local dstT localmem[WGS2_ALIGNED];
DEFINE_ACCUMULATOR;
for (int grain = groupnum * WGS; id < total; id += grain)
{
int src_index = mad24(id / cols, step, offset + (id % cols) * (int)sizeof(srcT));
__global const srcT * src = (__global const srcT *)(srcptr + src_index);
REDUCE_GLOBAL;
}
if (lid < WGS2_ALIGNED)
localmem[lid] = accumulator;
barrier(CLK_LOCAL_MEM_FENCE);
if (lid >= WGS2_ALIGNED)
REDUCE_LOCAL_1;
barrier(CLK_LOCAL_MEM_FENCE);
for (int lsize = WGS2_ALIGNED >> 1; lsize > 0; lsize >>= 1)
{
if (lid < lsize)
{
int lid2 = lsize + lid;
REDUCE_LOCAL_2;
}
barrier(CLK_LOCAL_MEM_FENCE);
}
if (lid == 0)
{
__global dstT * dst = (__global dstT *)(dstptr + (int)sizeof(dstT) * gid);
dst[0] = localmem[0];
}
}

View File

@ -0,0 +1,59 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jin Ma jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
__kernel void setIdentity(__global uchar * srcptr, int src_step, int src_offset, int rows, int cols,
T scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < cols && y < rows)
{
int src_index = mad24(y, src_step, src_offset + x * (int)sizeof(T));
__global T * src = (__global T *)(srcptr + src_index);
src[0] = x == y ? scalar : (T)(0);
}
}

View File

@ -0,0 +1,124 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Jia Haipeng, jiahaipeng95@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#define LDS_STEP TILE_DIM
__kernel void transpose(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset)
{
int gp_x = get_group_id(0), gp_y = get_group_id(1);
int gs_x = get_num_groups(0), gs_y = get_num_groups(1);
int groupId_x, groupId_y;
if (src_rows == src_cols)
{
groupId_y = gp_x;
groupId_x = (gp_x + gp_y) % gs_x;
}
else
{
int bid = gp_x + gs_x * gp_y;
groupId_y = bid % gs_y;
groupId_x = ((bid / gs_y) + groupId_y) % gs_x;
}
int lx = get_local_id(0);
int ly = get_local_id(1);
int x = groupId_x * TILE_DIM + lx;
int y = groupId_y * TILE_DIM + ly;
int x_index = groupId_y * TILE_DIM + lx;
int y_index = groupId_x * TILE_DIM + ly;
__local T title[TILE_DIM * LDS_STEP];
if (x < src_cols && y < src_rows)
{
int index_src = mad24(y, src_step, x * (int)sizeof(T) + src_offset);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
if (y + i < src_rows)
{
__global const T * src = (__global const T *)(srcptr + index_src);
title[(ly + i) * LDS_STEP + lx] = src[0];
index_src = mad24(BLOCK_ROWS, src_step, index_src);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
if (x_index < src_rows && y_index < src_cols)
{
int index_dst = mad24(y_index, dst_step, x_index * (int)sizeof(T) + dst_offset);
for (int i = 0; i < TILE_DIM; i += BLOCK_ROWS)
if ((y_index + i) < src_cols)
{
__global T * dst = (__global T *)(dstptr + index_dst);
dst[0] = title[lx * LDS_STEP + ly + i];
index_dst = mad24(BLOCK_ROWS, dst_step, index_dst);
}
}
}
__kernel void transpose_inplace(__global uchar * srcptr, int src_step, int src_offset, int src_rows)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (y < src_rows && x < y)
{
int src_index = mad24(y, src_step, src_offset + x * (int)sizeof(T));
int dst_index = mad24(x, src_step, src_offset + y * (int)sizeof(T));
__global T * src = (__global T *)(srcptr + src_index);
__global T * dst = (__global T *)(srcptr + dst_index);
T tmp = dst[0];
dst[0] = src[0];
src[0] = tmp;
}
}

View File

@ -41,6 +41,7 @@
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
#include <climits>
#include <limits>
@ -448,10 +449,77 @@ static SumSqrFunc getSumSqrTab(int depth)
return sumSqrTab[depth];
}
template <typename T> Scalar ocl_part_sum(Mat m)
{
CV_Assert(m.rows == 1);
Scalar s = Scalar::all(0);
int cn = m.channels();
const T * const ptr = m.ptr<T>(0);
for (int x = 0, w = m.cols * cn; x < w; )
for (int c = 0; c < cn; ++c, ++x)
s[c] += ptr[x];
return s;
}
enum { OCL_OP_SUM = 0, OCL_OP_SUM_ABS = 1, OCL_OP_SUM_SQR = 2 };
static bool ocl_sum( InputArray _src, Scalar & res, int sum_op )
{
CV_Assert(sum_op == OCL_OP_SUM || sum_op == OCL_OP_SUM_ABS || sum_op == OCL_OP_SUM_SQR);
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if ( (!doubleSupport && depth == CV_64F) || cn > 4 || cn == 3 || _src.dims() > 2 )
return false;
int dbsize = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
int ddepth = std::max(CV_32S, depth), dtype = CV_MAKE_TYPE(ddepth, cn);
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
static const char * const opMap[3] = { "OP_SUM", "OP_SUM_ABS", "OP_SUM_SQR" };
char cvt[40];
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc,
format("-D srcT=%s -D dstT=%s -D convertToDT=%s -D %s -D WGS=%d -D WGS2_ALIGNED=%d%s",
ocl::typeToStr(type), ocl::typeToStr(dtype), ocl::convertTypeStr(depth, ddepth, cn, cvt),
opMap[sum_op], (int)wgs, wgs2_aligned,
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat src = _src.getUMat(), db(1, dbsize, dtype);
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(),
dbsize, ocl::KernelArg::PtrWriteOnly(db));
size_t globalsize = dbsize * wgs;
if (k.run(1, &globalsize, &wgs, true))
{
typedef Scalar (*part_sum)(Mat m);
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> },
func = funcs[ddepth - CV_32S];
res = func(db.getMat(ACCESS_READ));
return true;
}
return false;
}
}
cv::Scalar cv::sum( InputArray _src )
{
Scalar _res;
if (ocl::useOpenCL() && _src.isUMat() && ocl_sum(_src, _res, OCL_OP_SUM))
return _res;
Mat src = _src.getMat();
int k, cn = src.channels(), depth = src.depth();
@ -542,12 +610,55 @@ cv::Scalar cv::sum( InputArray _src )
return s;
}
namespace cv {
static bool ocl_countNonZero( InputArray _src, int & res )
{
int type = _src.type(), depth = CV_MAT_DEPTH(type);
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0;
if (depth == CV_64F && !doubleSupport)
return false;
int dbsize = ocl::Device::getDefault().maxComputeUnits();
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
int wgs2_aligned = 1;
while (wgs2_aligned < (int)wgs)
wgs2_aligned <<= 1;
wgs2_aligned >>= 1;
ocl::Kernel k("reduce", ocl::core::reduce_oclsrc,
format("-D srcT=%s -D OP_COUNT_NON_ZERO -D WGS=%d -D WGS2_ALIGNED=%d%s",
ocl::typeToStr(type), (int)wgs,
wgs2_aligned, doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
if (k.empty())
return false;
UMat src = _src.getUMat(), db(1, dbsize, CV_32SC1);
k.args(ocl::KernelArg::ReadOnlyNoSize(src), src.cols, (int)src.total(),
dbsize, ocl::KernelArg::PtrWriteOnly(db));
size_t globalsize = dbsize * wgs;
if (k.run(1, &globalsize, &wgs, true))
return res = saturate_cast<int>(cv::sum(db.getMat(ACCESS_READ))[0]), true;
return false;
}
}
int cv::countNonZero( InputArray _src )
{
CV_Assert( _src.channels() == 1 );
int res = -1;
if (ocl::useOpenCL() && _src.isUMat() && ocl_countNonZero(_src, res))
return res;
Mat src = _src.getMat();
CountNonZeroFunc func = getCountNonZeroTab(src.depth());
CV_Assert( src.channels() == 1 && func != 0 );
CV_Assert( func != 0 );
const Mat* arrays[] = {&src, 0};
uchar* ptrs[1];
@ -693,9 +804,54 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
return s*(nz0 ? 1./nz0 : 0);
}
namespace cv {
static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv )
{
Scalar mean, stddev;
if (!ocl_sum(_src, mean, OCL_OP_SUM))
return false;
if (!ocl_sum(_src, stddev, OCL_OP_SUM_SQR))
return false;
double total = 1.0 / _src.total();
int k, j, cn = _src.channels();
for (int i = 0; i < cn; ++i)
{
mean[i] *= total;
stddev[i] = std::sqrt(std::max(stddev[i] * total - mean[i] * mean[i] , 0.));
}
for( j = 0; j < 2; j++ )
{
const double * const sptr = j == 0 ? &mean[0] : &stddev[0];
_OutputArray _dst = j == 0 ? _mean : _sdv;
if( !_dst.needed() )
continue;
if( !_dst.fixedSize() )
_dst.create(cn, 1, CV_64F, -1, true);
Mat dst = _dst.getMat();
int dcn = (int)dst.total();
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
double* dptr = dst.ptr<double>();
for( k = 0; k < cn; k++ )
dptr[k] = sptr[k];
for( ; k < dcn; k++ )
dptr[k] = 0;
}
return true;
}
}
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
{
if (ocl::useOpenCL() && _src.isUMat() && _mask.empty() && ocl_meanStdDev(_src, _mean, _sdv))
return;
Mat src = _src.getMat(), mask = _mask.getMat();
CV_Assert( mask.empty() || mask.type() == CV_8U );
@ -2602,9 +2758,8 @@ void cv::findNonZero( InputArray _src, OutputArray _idx )
double cv::PSNR(InputArray _src1, InputArray _src2)
{
Mat src1 = _src1.getMat(), src2 = _src2.getMat();
CV_Assert( src1.depth() == CV_8U );
double diff = std::sqrt(norm(src1, src2, NORM_L2SQR)/(src1.total()*src1.channels()));
CV_Assert( _src1.depth() == CV_8U );
double diff = std::sqrt(norm(_src1, _src2, NORM_L2SQR)/(_src1.total()*_src1.channels()));
return 20*log10(255./(diff+DBL_EPSILON));
}

View File

@ -119,7 +119,6 @@ PARAM_TEST_CASE(ArithmTestBase, MatDepth, Channels, bool)
bool use_roi;
cv::Scalar val;
// declare Mat + UMat mirrors
TEST_DECLARE_INPUT_PARAMETER(src1)
TEST_DECLARE_INPUT_PARAMETER(src2)
TEST_DECLARE_INPUT_PARAMETER(mask)
@ -281,6 +280,614 @@ OCL_TEST_P(Subtract, Scalar_Mask)
}
}
//////////////////////////////// Mul /////////////////////////////////////////////////
typedef ArithmTestBase Mul;
OCL_TEST_P(Mul, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::multiply(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::multiply(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
OCL_TEST_P(Mul, DISABLED_Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::multiply(src1_roi, val, dst1_roi));
OCL_ON(cv::multiply(val, usrc1_roi, udst1_roi));
Near(udst1_roi.depth() >= CV_32F ? 1e-3 : 1);
}
}
OCL_TEST_P(Mul, DISABLED_Mat_Scale)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::multiply(src1_roi, src2_roi, dst1_roi, val[0]));
OCL_ON(cv::multiply(usrc1_roi, usrc2_roi, udst1_roi, val[0]));
Near(udst1_roi.depth() >= CV_32F ? 1e-3 : 1);
}
}
//////////////////////////////// Div /////////////////////////////////////////////////
typedef ArithmTestBase Div;
OCL_TEST_P(Div, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::divide(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::divide(usrc1_roi, usrc2_roi, udst1_roi));
Near(1);
}
}
OCL_TEST_P(Div, DISABLED_Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::divide(val, src1_roi, dst1_roi));
OCL_ON(cv::divide(val, usrc1_roi, udst1_roi));
Near(udst1_roi.depth() >= CV_32F ? 1e-3 : 1);
}
}
OCL_TEST_P(Div, Mat_Scale)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::divide(src1_roi, src2_roi, dst1_roi, val[0]));
OCL_ON(cv::divide(usrc1_roi, usrc2_roi, udst1_roi, val[0]));
Near(udst1_roi.depth() >= CV_32F ? 4e-3 : 1);
}
}
OCL_TEST_P(Div, DISABLED_Mat_Scalar_Scale)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::divide(src1_roi, val, dst1_roi, val[0]));
OCL_ON(cv::divide(usrc1_roi, val, udst1_roi, val[0]));
Near(udst1_roi.depth() >= CV_32F ? 4e-3 : 1);
}
}
//////////////////////////////// Min/Max /////////////////////////////////////////////////
typedef ArithmTestBase Min;
OCL_TEST_P(Min, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::max(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::max(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
typedef ArithmTestBase Max;
OCL_TEST_P(Max, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::min(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::min(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
//////////////////////////////// Absdiff /////////////////////////////////////////////////
typedef ArithmTestBase Absdiff;
OCL_TEST_P(Absdiff, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::absdiff(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::absdiff(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
OCL_TEST_P(Absdiff, Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::absdiff(src1_roi, val, dst1_roi));
OCL_ON(cv::absdiff(usrc1_roi, val, udst1_roi));
Near(1e-5);
}
}
//////////////////////////////// CartToPolar /////////////////////////////////////////////////
typedef ArithmTestBase CartToPolar;
OCL_TEST_P(CartToPolar, angleInDegree)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::cartToPolar(src1_roi, src2_roi, dst1_roi, dst2_roi, true));
OCL_ON(cv::cartToPolar(usrc1_roi, usrc2_roi, udst1_roi, udst2_roi, true));
Near(0.5);
Near1(0.5);
}
}
OCL_TEST_P(CartToPolar, angleInRadians)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::cartToPolar(src1_roi, src2_roi, dst1_roi, dst2_roi));
OCL_ON(cv::cartToPolar(usrc1_roi, usrc2_roi, udst1_roi, udst2_roi));
Near(0.5);
Near1(0.5);
}
}
//////////////////////////////// PolarToCart /////////////////////////////////////////////////
typedef ArithmTestBase PolarToCart;
OCL_TEST_P(PolarToCart, angleInDegree)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::polarToCart(src1_roi, src2_roi, dst1_roi, dst2_roi, true));
OCL_ON(cv::polarToCart(usrc1_roi, usrc2_roi, udst1_roi, udst2_roi, true));
Near(0.5);
Near1(0.5);
}
}
OCL_TEST_P(PolarToCart, angleInRadians)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::polarToCart(src1_roi, src2_roi, dst1_roi, dst2_roi));
OCL_ON(cv::polarToCart(usrc1_roi, usrc2_roi, udst1_roi, udst2_roi));
Near(0.5);
Near1(0.5);
}
}
//////////////////////////////// Transpose /////////////////////////////////////////////////
typedef ArithmTestBase Transpose;
OCL_TEST_P(Transpose, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::transpose(src1_roi, dst1_roi));
OCL_ON(cv::transpose(usrc1_roi, udst1_roi));
Near(1e-5);
}
}
OCL_TEST_P(Transpose, SquareInplace)
{
const int type = CV_MAKE_TYPE(depth, cn);
for (int j = 0; j < test_loop_times; j++)
{
Size roiSize = randomSize(1, MAX_VALUE);
roiSize.height = roiSize.width; // make it square
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src1, src1_roi, roiSize, srcBorder, type, 5, 16);
UMAT_UPLOAD_OUTPUT_PARAMETER(src1);
OCL_OFF(cv::transpose(src1_roi, src1_roi));
OCL_ON(cv::transpose(usrc1_roi, usrc1_roi));
EXPECT_MAT_NEAR(src1, usrc1, 0.0);
EXPECT_MAT_NEAR(src1_roi, usrc1_roi, 0.0);
}
}
//////////////////////////////// Bitwise_and /////////////////////////////////////////////////
typedef ArithmTestBase Bitwise_and;
OCL_TEST_P(Bitwise_and, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_and(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::bitwise_and(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_and, Mat_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_and(src1_roi, src2_roi, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_and(usrc1_roi, usrc2_roi, udst1_roi, umask_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_and, Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_and(src1_roi, val, dst1_roi));
OCL_ON(cv::bitwise_and(usrc1_roi, val, udst1_roi));
Near(1e-5);
}
}
OCL_TEST_P(Bitwise_and, Scalar_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_and(src1_roi, val, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_and(usrc1_roi, val, udst1_roi, umask_roi));
Near(1e-5);
}
}
//////////////////////////////// Bitwise_or /////////////////////////////////////////////////
typedef ArithmTestBase Bitwise_or;
OCL_TEST_P(Bitwise_or, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_or(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::bitwise_or(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_or, Mat_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_or(src1_roi, src2_roi, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_or(usrc1_roi, usrc2_roi, udst1_roi, umask_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_or, Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_or(src1_roi, val, dst1_roi));
OCL_ON(cv::bitwise_or(usrc1_roi, val, udst1_roi));
Near(1e-5);
}
}
OCL_TEST_P(Bitwise_or, Scalar_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_or(src1_roi, val, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_or(val, usrc1_roi, udst1_roi, umask_roi));
Near(1e-5);
}
}
//////////////////////////////// Bitwise_xor /////////////////////////////////////////////////
typedef ArithmTestBase Bitwise_xor;
OCL_TEST_P(Bitwise_xor, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_xor(src1_roi, src2_roi, dst1_roi));
OCL_ON(cv::bitwise_xor(usrc1_roi, usrc2_roi, udst1_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_xor, Mat_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_xor(src1_roi, src2_roi, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_xor(usrc1_roi, usrc2_roi, udst1_roi, umask_roi));
Near(0);
}
}
OCL_TEST_P(Bitwise_xor, Scalar)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_xor(src1_roi, val, dst1_roi));
OCL_ON(cv::bitwise_xor(usrc1_roi, val, udst1_roi));
Near(1e-5);
}
}
OCL_TEST_P(Bitwise_xor, Scalar_Mask)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_xor(src1_roi, val, dst1_roi, mask_roi));
OCL_ON(cv::bitwise_xor(usrc1_roi, val, udst1_roi, umask_roi));
Near(1e-5);
}
}
//////////////////////////////// Bitwise_not /////////////////////////////////////////////////
typedef ArithmTestBase Bitwise_not;
OCL_TEST_P(Bitwise_not, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::bitwise_not(src1_roi, dst1_roi));
OCL_ON(cv::bitwise_not(usrc1_roi, udst1_roi));
Near(0);
}
}
//////////////////////////////// Compare /////////////////////////////////////////////////
typedef ArithmTestBase Compare;
OCL_TEST_P(Compare, Mat)
{
int cmp_codes[] = { CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE };
int cmp_num = sizeof(cmp_codes) / sizeof(int);
for (int i = 0; i < cmp_num; ++i)
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::compare(src1_roi, src2_roi, dst1_roi, cmp_codes[i]));
OCL_ON(cv::compare(usrc1_roi, usrc2_roi, udst1_roi, cmp_codes[i]));
Near(0);
}
}
//////////////////////////////// Pow /////////////////////////////////////////////////
typedef ArithmTestBase Pow;
OCL_TEST_P(Pow, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
double p = 4.5;
OCL_OFF(cv::pow(src1_roi, p, dst1_roi));
OCL_ON(cv::pow(usrc1_roi, p, udst1_roi));
Near(1);
}
}
//////////////////////////////// AddWeighted /////////////////////////////////////////////////
typedef ArithmTestBase AddWeighted;
OCL_TEST_P(AddWeighted, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
const double alpha = 2.0, beta = 1.0, gama = 3.0;
OCL_OFF(cv::addWeighted(src1_roi, alpha, src2_roi, beta, gama, dst1_roi));
OCL_ON(cv::addWeighted(usrc1_roi, alpha, usrc2_roi, beta, gama, udst1_roi));
Near(3e-4);
}
}
//////////////////////////////// setIdentity /////////////////////////////////////////////////
typedef ArithmTestBase SetIdentity;
OCL_TEST_P(SetIdentity, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
OCL_OFF(cv::setIdentity(dst1_roi, val));
OCL_ON(cv::setIdentity(udst1_roi, val));
Near(0);
}
}
//// Repeat
struct RepeatTestCase :
public ArithmTestBase
{
int nx, ny;
virtual void generateTestData()
{
const int type = CV_MAKE_TYPE(depth, cn);
nx = 2;//randomInt(1, 4);
ny = 2;//randomInt(1, 4);
Size srcRoiSize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(src1, src1_roi, srcRoiSize, srcBorder, type, 2, 11);
Size dstRoiSize(srcRoiSize.width * nx, srcRoiSize.height * ny);
Border dst1Border = randomBorder(0, use_roi ? MAX_VALUE : 0);
randomSubMat(dst1, dst1_roi, dstRoiSize, dst1Border, type, 5, 16);
UMAT_UPLOAD_INPUT_PARAMETER(src1)
UMAT_UPLOAD_OUTPUT_PARAMETER(dst1)
}
};
typedef RepeatTestCase Repeat;
OCL_TEST_P(Repeat, DISABLED_Mat)
{
for (int i = 0; i < test_loop_times; ++i)
{
generateTestData();
OCL_OFF(cv::repeat(src1_roi, ny, nx, dst1_roi));
OCL_ON(cv::repeat(usrc1_roi, ny, nx, udst1_roi));
Near();
}
}
//////////////////////////////// CountNonZero /////////////////////////////////////////////////
typedef ArithmTestBase CountNonZero;
OCL_TEST_P(CountNonZero, MAT)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
int cpures, gpures;
OCL_OFF(cpures = cv::countNonZero(src1_roi));
OCL_ON(gpures = cv::countNonZero(usrc1_roi));
EXPECT_EQ(cpures, gpures);
}
}
//////////////////////////////// Sum /////////////////////////////////////////////////
typedef ArithmTestBase Sum;
OCL_TEST_P(Sum, MAT)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
Scalar cpures, gpures;
OCL_OFF(cpures = cv::sum(src1_roi));
OCL_ON(gpures = cv::sum(usrc1_roi));
for (int i = 0; i < cn; ++i)
EXPECT_NEAR(cpures[i], gpures[i], 0.1);
}
}
//////////////////////////////// meanStdDev /////////////////////////////////////////////////
typedef ArithmTestBase MeanStdDev;
OCL_TEST_P(MeanStdDev, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
generateTestData();
Scalar cpu_mean, cpu_stddev;
Scalar gpu_mean, gpu_stddev;
OCL_OFF(cv::meanStdDev(src1_roi, cpu_mean, cpu_stddev));
OCL_ON(cv::meanStdDev(usrc1_roi, gpu_mean, gpu_stddev));
for (int i = 0; i < cn; ++i)
{
EXPECT_NEAR(cpu_mean[i], gpu_mean[i], 0.1);
EXPECT_NEAR(cpu_stddev[i], gpu_stddev[i], 0.1);
}
}
}
//////////////////////////////////////// Log /////////////////////////////////////////
typedef ArithmTestBase Log;
@ -359,13 +966,33 @@ OCL_TEST_P(Magnitude, Mat)
//////////////////////////////////////// Instantiation /////////////////////////////////////////
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Lut, Combine(::testing::Values(CV_8U, CV_8S), OCL_ALL_DEPTHS, ::testing::Values(1, 2, 3, 4), Bool(), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine(OCL_ALL_DEPTHS, ::testing::Values(1, 2, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Subtract, Combine(OCL_ALL_DEPTHS, ::testing::Values(1, 2, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine(::testing::Values(CV_32F, CV_64F), ::testing::Values(1, 2, 3, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine(::testing::Values(CV_32F, CV_64F), ::testing::Values(1, 2, 3, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine(::testing::Values(CV_32F, CV_64F), ::testing::Values(1, 2, 3, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine(::testing::Values(CV_32F, CV_64F), ::testing::Values(1, 2, 3, 4), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Lut, Combine(::testing::Values(CV_8U, CV_8S), OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool(), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Subtract, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Mul, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Div, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Min, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Max, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Absdiff, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine(testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine(testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
//OCL_INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_and, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
//OCL_INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_not, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
//OCL_INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_xor, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
//OCL_INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_or, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine(testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Compare, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, SetIdentity, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Repeat, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine(OCL_ALL_DEPTHS, testing::Values(Channels(1)), Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, MeanStdDev, Combine(OCL_ALL_DEPTHS, OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine(::testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine(::testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine(::testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
OCL_INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine(::testing::Values(CV_32F, CV_64F), OCL_ALL_CHANNELS, Bool()));
} } // namespace cvtest::ocl