opencv/samples/python2/houghlines.py

44 lines
1.2 KiB
Python
Raw Normal View History

#!/usr/bin/python
'''
This example illustrates how to use Hough Transform to find lines
Usage: ./houghlines.py [<image_name>]
2014-09-13 18:28:41 +04:00
image argument defaults to ../data/pic1.png
'''
import cv2
import numpy as np
import sys
import math
try:
2013-04-12 17:39:16 +04:00
fn = sys.argv[1]
except:
2014-09-13 18:28:41 +04:00
fn = "../data/pic1.png"
print __doc__
src = cv2.imread(fn)
dst = cv2.Canny(src, 50, 200)
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
if True: # HoughLinesP
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
a,b,c = lines.shape
for i in range(a):
cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)
else: # HoughLines
lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
a,b,c = lines.shape
for i in range(a):
rho = lines[i][0][0]
theta = lines[i][0][1]
a = math.cos(theta)
b = math.sin(theta)
x0, y0 = a*rho, b*rho
pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
cv2.imshow("source", src)
cv2.imshow("detected lines", cdst)
cv2.waitKey(0)