279 lines
9.0 KiB
C++
279 lines
9.0 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// Intel License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other materials provided with the distribution.
|
||
|
//
|
||
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
#include "cvtest.h"
|
||
|
|
||
|
class CV_CannyTest : public CvArrTest
|
||
|
{
|
||
|
public:
|
||
|
CV_CannyTest();
|
||
|
|
||
|
protected:
|
||
|
void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types );
|
||
|
double get_success_error_level( int test_case_idx, int i, int j );
|
||
|
int prepare_test_case( int test_case_idx );
|
||
|
void run_func();
|
||
|
void prepare_to_validation( int );
|
||
|
|
||
|
int aperture_size, use_true_gradient;
|
||
|
double threshold1, threshold2;
|
||
|
bool test_cpp;
|
||
|
};
|
||
|
|
||
|
|
||
|
CV_CannyTest::CV_CannyTest()
|
||
|
: CvArrTest( "canny", "cvCanny, cvSobel", "" )
|
||
|
{
|
||
|
test_array[INPUT].push(NULL);
|
||
|
test_array[OUTPUT].push(NULL);
|
||
|
test_array[REF_OUTPUT].push(NULL);
|
||
|
element_wise_relative_error = true;
|
||
|
aperture_size = use_true_gradient = 0;
|
||
|
threshold1 = threshold2 = 0;
|
||
|
|
||
|
support_testing_modes = CvTS::CORRECTNESS_CHECK_MODE;
|
||
|
default_timing_param_names = 0;
|
||
|
test_cpp = false;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_CannyTest::get_test_array_types_and_sizes( int test_case_idx,
|
||
|
CvSize** sizes, int** types )
|
||
|
{
|
||
|
CvRNG* rng = ts->get_rng();
|
||
|
double thresh_range;
|
||
|
|
||
|
CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
||
|
types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_8U;
|
||
|
|
||
|
aperture_size = cvTsRandInt(rng) % 2 ? 5 : 3;
|
||
|
thresh_range = aperture_size == 3 ? 300 : 1000;
|
||
|
|
||
|
threshold1 = cvTsRandReal(rng)*thresh_range;
|
||
|
threshold2 = cvTsRandReal(rng)*thresh_range*0.3;
|
||
|
|
||
|
if( cvTsRandInt(rng) % 2 )
|
||
|
CV_SWAP( threshold1, threshold2, thresh_range );
|
||
|
|
||
|
use_true_gradient = cvTsRandInt(rng) % 2;
|
||
|
test_cpp = (cvTsRandInt(rng) & 256) == 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
int CV_CannyTest::prepare_test_case( int test_case_idx )
|
||
|
{
|
||
|
int code = CvArrTest::prepare_test_case( test_case_idx );
|
||
|
if( code > 0 )
|
||
|
{
|
||
|
CvMat* src = &test_mat[INPUT][0];
|
||
|
cvSmooth( src, src, CV_GAUSSIAN, 11, 11, 5, 5 );
|
||
|
}
|
||
|
|
||
|
return code;
|
||
|
}
|
||
|
|
||
|
|
||
|
double CV_CannyTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_CannyTest::run_func()
|
||
|
{
|
||
|
if(!test_cpp)
|
||
|
cvCanny( test_array[INPUT][0], test_array[OUTPUT][0], threshold1, threshold2,
|
||
|
aperture_size + (use_true_gradient ? CV_CANNY_L2_GRADIENT : 0));
|
||
|
else
|
||
|
{
|
||
|
cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
|
||
|
cv::Canny(cv::cvarrToMat(test_array[INPUT][0]), _out, threshold1, threshold2,
|
||
|
aperture_size + (use_true_gradient ? CV_CANNY_L2_GRADIENT : 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
icvTsCannyFollow( int x, int y, float lowThreshold, const CvMat* mag, CvMat* dst )
|
||
|
{
|
||
|
static const int ofs[][2] = {{1,0},{1,-1},{0,-1},{-1,-1},{-1,0},{-1,1},{0,1},{1,1}};
|
||
|
int i;
|
||
|
|
||
|
dst->data.ptr[dst->step*y + x] = (uchar)255;
|
||
|
|
||
|
for( i = 0; i < 8; i++ )
|
||
|
{
|
||
|
int x1 = x + ofs[i][0];
|
||
|
int y1 = y + ofs[i][1];
|
||
|
if( (unsigned)x1 < (unsigned)mag->cols &&
|
||
|
(unsigned)y1 < (unsigned)mag->rows &&
|
||
|
mag->data.fl[y1*mag->cols+x1] > lowThreshold &&
|
||
|
!dst->data.ptr[dst->step*y1+x1] )
|
||
|
icvTsCannyFollow( x1, y1, lowThreshold, mag, dst );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
static void
|
||
|
icvTsCanny( const CvMat* src, CvMat* dst,
|
||
|
double threshold1, double threshold2,
|
||
|
int aperture_size, int use_true_gradient )
|
||
|
{
|
||
|
int m = aperture_size;
|
||
|
CvMat* _src = cvCreateMat( src->rows + m - 1, src->cols + m - 1, CV_16S );
|
||
|
CvMat* dx = cvCreateMat( src->rows, src->cols, CV_16S );
|
||
|
CvMat* dy = cvCreateMat( src->rows, src->cols, CV_16S );
|
||
|
CvMat* kernel = cvCreateMat( m, m, CV_32F );
|
||
|
CvPoint anchor = {m/2, m/2};
|
||
|
CvMat* mag = cvCreateMat( src->rows, src->cols, CV_32F );
|
||
|
const double tan_pi_8 = tan(CV_PI/8.);
|
||
|
const double tan_3pi_8 = tan(CV_PI*3/8);
|
||
|
float lowThreshold = (float)MIN(threshold1, threshold2);
|
||
|
float highThreshold = (float)MAX(threshold1, threshold2);
|
||
|
|
||
|
int x, y, width = src->cols, height = src->rows;
|
||
|
|
||
|
cvTsConvert( src, dx );
|
||
|
cvTsPrepareToFilter( dx, _src, anchor, CV_TS_BORDER_REPLICATE );
|
||
|
cvTsCalcSobelKernel2D( 1, 0, m, 0, kernel );
|
||
|
cvTsConvolve2D( _src, dx, kernel, anchor );
|
||
|
cvTsCalcSobelKernel2D( 0, 1, m, 0, kernel );
|
||
|
cvTsConvolve2D( _src, dy, kernel, anchor );
|
||
|
|
||
|
/* estimate magnitude and angle */
|
||
|
for( y = 0; y < height; y++ )
|
||
|
{
|
||
|
const short* _dx = (short*)(dx->data.ptr + dx->step*y);
|
||
|
const short* _dy = (short*)(dy->data.ptr + dy->step*y);
|
||
|
float* _mag = (float*)(mag->data.ptr + mag->step*y);
|
||
|
|
||
|
for( x = 0; x < width; x++ )
|
||
|
{
|
||
|
float mval = use_true_gradient ?
|
||
|
(float)sqrt((double)(_dx[x]*_dx[x] + _dy[x]*_dy[x])) :
|
||
|
(float)(abs(_dx[x]) + abs(_dy[x]));
|
||
|
_mag[x] = mval;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* nonmaxima suppression */
|
||
|
for( y = 0; y < height; y++ )
|
||
|
{
|
||
|
const short* _dx = (short*)(dx->data.ptr + dx->step*y);
|
||
|
const short* _dy = (short*)(dy->data.ptr + dy->step*y);
|
||
|
float* _mag = (float*)(mag->data.ptr + mag->step*y);
|
||
|
|
||
|
for( x = 0; x < width; x++ )
|
||
|
{
|
||
|
int y1 = 0, y2 = 0, x1 = 0, x2 = 0;
|
||
|
double tg;
|
||
|
float a = _mag[x], b = 0, c = 0;
|
||
|
|
||
|
if( a <= lowThreshold )
|
||
|
continue;
|
||
|
|
||
|
if( _dx[x] )
|
||
|
tg = (double)_dy[x]/_dx[x];
|
||
|
else
|
||
|
tg = DBL_MAX*CV_SIGN(_dy[x]);
|
||
|
|
||
|
if( fabs(tg) < tan_pi_8 )
|
||
|
{
|
||
|
y1 = y2 = y; x1 = x + 1; x2 = x - 1;
|
||
|
}
|
||
|
else if( tan_pi_8 <= tg && tg <= tan_3pi_8 )
|
||
|
{
|
||
|
y1 = y + 1; y2 = y - 1; x1 = x + 1; x2 = x - 1;
|
||
|
}
|
||
|
else if( -tan_3pi_8 <= tg && tg <= -tan_pi_8 )
|
||
|
{
|
||
|
y1 = y - 1; y2 = y + 1; x1 = x + 1; x2 = x - 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
assert( fabs(tg) > tan_3pi_8 );
|
||
|
x1 = x2 = x; y1 = y + 1; y2 = y - 1;
|
||
|
}
|
||
|
|
||
|
if( (unsigned)y1 < (unsigned)height && (unsigned)x1 < (unsigned)width )
|
||
|
b = (float)fabs((double)mag->data.fl[y1*width+x1]);
|
||
|
|
||
|
if( (unsigned)y2 < (unsigned)height && (unsigned)x2 < (unsigned)width )
|
||
|
c = (float)fabs((double)mag->data.fl[y2*width+x2]);
|
||
|
|
||
|
if( (a > b || (a == b && ((x1 == x+1 && y1 == y) || (x1 == x && y1 == y+1)))) && a > c )
|
||
|
;
|
||
|
else
|
||
|
_mag[x] = -a;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cvTsZero( dst );
|
||
|
|
||
|
/* hysteresis threshold */
|
||
|
for( y = 0; y < height; y++ )
|
||
|
{
|
||
|
const float* _mag = (float*)(mag->data.ptr + mag->step*y);
|
||
|
uchar* _dst = dst->data.ptr + dst->step*y;
|
||
|
|
||
|
for( x = 0; x < width; x++ )
|
||
|
if( _mag[x] > highThreshold && !_dst[x] )
|
||
|
icvTsCannyFollow( x, y, lowThreshold, mag, dst );
|
||
|
}
|
||
|
|
||
|
cvReleaseMat( &_src );
|
||
|
cvReleaseMat( &dx );
|
||
|
cvReleaseMat( &dy );
|
||
|
cvReleaseMat( &kernel );
|
||
|
cvReleaseMat( &mag );
|
||
|
}
|
||
|
|
||
|
|
||
|
void CV_CannyTest::prepare_to_validation( int )
|
||
|
{
|
||
|
icvTsCanny( &test_mat[INPUT][0], &test_mat[REF_OUTPUT][0],
|
||
|
threshold1, threshold2, aperture_size, use_true_gradient );
|
||
|
}
|
||
|
|
||
|
CV_CannyTest canny_test;
|
||
|
|
||
|
/* End of file. */
|