opencv/modules/features2d/doc/common_interfaces_of_feature_detectors.rst

607 lines
19 KiB
ReStructuredText
Raw Normal View History

Common Interfaces of Feature Detectors
======================================
.. highlight:: cpp
2011-05-04 21:22:51 +02:00
Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
2011-02-26 12:05:10 +01:00
between different algorithms solving the same problem. All objects that implement keypoint detectors
2011-05-04 21:22:51 +02:00
inherit the
:ref:`FeatureDetector` interface.
.. index:: KeyPoint
2011-03-03 08:29:55 +01:00
.. KeyPoint:
KeyPoint
--------
2011-05-12 01:31:50 +02:00
.. cpp:class:: KeyPoint
2011-05-04 21:22:51 +02:00
Data structure for salient point detectors ::
class KeyPoint
{
public:
// the default constructor
2011-02-26 12:05:10 +01:00
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0),
class_id(-1) {}
// the full constructor
KeyPoint(Point2f _pt, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
2011-02-26 12:05:10 +01:00
: pt(_pt), size(_size), angle(_angle), response(_response),
octave(_octave), class_id(_class_id) {}
// another form of the full constructor
KeyPoint(float x, float y, float _size, float _angle=-1,
float _response=0, int _octave=0, int _class_id=-1)
2011-02-26 12:05:10 +01:00
: pt(x, y), size(_size), angle(_angle), response(_response),
octave(_octave), class_id(_class_id) {}
// converts vector of keypoints to vector of points
static void convert(const std::vector<KeyPoint>& keypoints,
std::vector<Point2f>& points2f,
const std::vector<int>& keypointIndexes=std::vector<int>());
2011-02-26 12:05:10 +01:00
// converts vector of points to the vector of keypoints, where each
2011-05-04 21:22:51 +02:00
// keypoint is assigned to the same size and the same orientation
static void convert(const std::vector<Point2f>& points2f,
std::vector<KeyPoint>& keypoints,
2011-02-26 12:05:10 +01:00
float size=1, float response=1, int octave=0,
int class_id=-1);
2011-02-26 12:05:10 +01:00
// computes overlap for pair of keypoints;
// overlap is a ratio between area of keypoint regions intersection and
2011-05-04 21:22:51 +02:00
// area of keypoint regions union (now keypoint region is a circle)
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
2011-02-26 12:05:10 +01:00
Point2f pt; // coordinates of the keypoints
2011-05-04 21:22:51 +02:00
float size; // diameter of the meaningful keypoint neighborhood
float angle; // computed orientation of the keypoint (-1 if not applicable)
2011-02-26 12:05:10 +01:00
float response; // the response by which the most strong keypoints
2011-05-04 21:22:51 +02:00
// have been selected. Can be used for further sorting
// or subsampling
int octave; // octave (pyramid layer) from which the keypoint has been extracted
2011-02-26 12:05:10 +01:00
int class_id; // object class (if the keypoints need to be clustered by
// an object they belong to)
};
2011-02-26 12:05:10 +01:00
// writes vector of keypoints to the file storage
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
// reads vector of keypoints from the specified file storage node
2011-02-26 12:05:10 +01:00
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
2011-03-03 08:29:55 +01:00
..
.. index:: FeatureDetector
.. _FeatureDetector:
FeatureDetector
---------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: FeatureDetector
2011-05-04 21:22:51 +02:00
Abstract base class for 2D image feature detectors ::
class CV_EXPORTS FeatureDetector
{
public:
virtual ~FeatureDetector();
2011-02-26 12:05:10 +01:00
void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
2011-02-26 12:05:10 +01:00
void detect( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const;
2011-02-26 12:05:10 +01:00
virtual void read(const FileNode&);
virtual void write(FileStorage&) const;
2011-02-26 12:05:10 +01:00
static Ptr<FeatureDetector> create( const string& detectorType );
2011-02-26 12:05:10 +01:00
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: FeatureDetector::detect
FeatureDetector::detect
---------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: void FeatureDetector::detect( const Mat& image, vector<KeyPoint>& keypoints, const Mat& mask=Mat() ) const
2011-05-04 21:22:51 +02:00
Detects keypoints in an image (first variant) or image set (second variant).
2011-05-04 21:22:51 +02:00
:param image: Image.
2011-05-04 21:22:51 +02:00
:param keypoints: Detected keypoints.
2011-05-04 21:22:51 +02:00
:param mask: Mask specifying where to look for keypoints (optional). It must be a char matrix with non-zero values in the region of interest.
2011-05-12 01:31:50 +02:00
.. cpp:function:: void FeatureDetector::detect( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints, const vector<Mat>& masks=vector<Mat>() ) const
2011-05-04 21:22:51 +02:00
:param images: Image set.
2011-05-04 21:22:51 +02:00
:param keypoints: Collection of keypoints detected in input images. ``keypoints[i]`` is a set of keypoints detected in ``images[i]`` .
2011-05-04 21:22:51 +02:00
:param masks: Masks for each input image specifying where to look for keypoints (optional). ``masks[i]`` is a mask for ``images[i]`` . Each element of the ``masks`` vector must be a char matrix with non-zero values in the region of interest.
.. index:: FeatureDetector::read
FeatureDetector::read
-------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: void FeatureDetector::read( const FileNode& fn )
2011-05-04 21:22:51 +02:00
Reads a feature detector object from a file node.
2011-05-04 21:22:51 +02:00
:param fn: File node from which the detector is read.
.. index:: FeatureDetector::write
FeatureDetector::write
--------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: void FeatureDetector::write( FileStorage& fs ) const
2011-05-04 21:22:51 +02:00
Writes a feature detector object to a file storage.
2011-05-04 21:22:51 +02:00
:param fs: File storage where the detector is written.
.. index:: FeatureDetector::create
FeatureDetector::create
---------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: Ptr<FeatureDetector> FeatureDetector::create( const string& detectorType )
2011-05-12 01:31:50 +02:00
Creates a feature detector by its name.
2011-02-26 12:05:10 +01:00
:param detectorType: Feature detector type.
2011-05-04 21:22:51 +02:00
The following detector types are supported:
* ``"FAST"`` -- :ref:`FastFeatureDetector`
* ``"STAR"`` -- :ref:`StarFeatureDetector`
* ``"SIFT"`` -- :ref:`SiftFeatureDetector`
* ``"SURF"`` -- :ref:`SurfFeatureDetector`
* ``"MSER"`` -- :ref:`MserFeatureDetector`
* ``"GFTT"`` -- :ref:`GfttFeatureDetector`
* ``"HARRIS"`` -- :ref:`HarrisFeatureDetector`
2011-05-04 21:22:51 +02:00
Also a combined format is supported: feature detector adapter name ( ``"Grid"`` --
:ref:`GridAdaptedFeatureDetector`, ``"Pyramid"`` --
:ref:`PyramidAdaptedFeatureDetector` ) + feature detector name (see above),
for example: ``"GridFAST"``, ``"PyramidSTAR"`` .
.. index:: FastFeatureDetector
.. _FastFeatureDetector:
FastFeatureDetector
-------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: FastFeatureDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`FAST` method ::
class FastFeatureDetector : public FeatureDetector
{
public:
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: GoodFeaturesToTrackDetector
.. _GoodFeaturesToTrackDetector:
GoodFeaturesToTrackDetector
---------------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: GoodFeaturesToTrackDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`goodFeaturesToTrack` function ::
class GoodFeaturesToTrackDetector : public FeatureDetector
{
public:
class Params
{
public:
2011-02-26 12:05:10 +01:00
Params( int maxCorners=1000, double qualityLevel=0.01,
double minDistance=1., int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
void read( const FileNode& fn );
void write( FileStorage& fs ) const;
2011-02-26 12:05:10 +01:00
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double k;
};
2011-02-26 12:05:10 +01:00
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
GoodFeaturesToTrackDetector::Params() );
2011-02-26 12:05:10 +01:00
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
double minDistance, int blockSize=3,
bool useHarrisDetector=false, double k=0.04 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: MserFeatureDetector
.. _MserFeatureDetector:
MserFeatureDetector
-------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: MserFeatureDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`MSER` class ::
class MserFeatureDetector : public FeatureDetector
{
public:
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
2011-02-26 12:05:10 +01:00
MserFeatureDetector( int delta, int minArea, int maxArea,
double maxVariation, double minDiversity,
2011-02-26 12:05:10 +01:00
int maxEvolution, double areaThreshold,
double minMargin, int edgeBlurSize );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: StarFeatureDetector
.. _StarFeatureDetector:
StarFeatureDetector
-------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: StarFeatureDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`StarDetector` class ::
class StarFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
int lineThresholdProjected = 10,
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: SiftFeatureDetector
.. _SiftFeatureDetector:
SiftFeatureDetector
-------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: SiftFeatureDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`SIFT` class ::
class SiftFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
SiftFeatureDetector(
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
SiftFeatureDetector( double threshold, double edgeThreshold,
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: SurfFeatureDetector
.. _SurfFeatureDetector:
SurfFeatureDetector
-------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: SurfFeatureDetector
2011-05-04 21:22:51 +02:00
Wrapping class for feature detection using the
:ref:`SURF` class ::
class SurfFeatureDetector : public FeatureDetector
{
public:
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
int octaveLayers = 4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: GridAdaptedFeatureDetector
.. _GridAdaptedFeatureDetector:
GridAdaptedFeatureDetector
--------------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: GridAdaptedFeatureDetector
2011-05-04 21:22:51 +02:00
Class adapting a detector to partition the source image into a grid and detect points in each cell ::
class GridAdaptedFeatureDetector : public FeatureDetector
{
public:
/*
* detector Detector that will be adapted.
2011-02-26 12:05:10 +01:00
* maxTotalKeypoints Maximum count of keypoints detected on the image.
2011-05-04 21:22:51 +02:00
* Only the strongest keypoints will be kept.
* gridRows Grid row count.
* gridCols Grid column count.
*/
2011-02-26 12:05:10 +01:00
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int maxTotalKeypoints, int gridRows=4,
int gridCols=4 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: PyramidAdaptedFeatureDetector
.. _PyramidAdaptedFeatureDetector:
PyramidAdaptedFeatureDetector
-----------------------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: PyramidAdaptedFeatureDetector
2011-05-04 21:22:51 +02:00
Class adapting a detector to detect points over multiple levels of a Gaussian pyramid. Consider using this class for detectors that are not inherently scaled. ::
class PyramidAdaptedFeatureDetector : public FeatureDetector
{
public:
2011-02-26 12:05:10 +01:00
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
int levels=2 );
virtual void read( const FileNode& fn );
virtual void write( FileStorage& fs ) const;
protected:
...
};
2011-03-03 08:29:55 +01:00
.. index:: DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector
-----------------------------
2011-03-03 08:29:55 +01:00
2011-05-12 01:31:50 +02:00
.. cpp:class:: DynamicAdaptedFeatureDetector
2011-05-04 21:22:51 +02:00
Adaptively adjusting detector that iteratively detects features until the desired number is found ::
2011-03-03 08:29:55 +01:00
class DynamicAdaptedFeatureDetector: public FeatureDetector
{
public:
2011-05-12 01:31:50 +02:00
DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster,
2011-03-03 08:29:55 +01:00
int min_features=400, int max_features=500, int max_iters=5 );
...
};
If the detector is persisted, it "remembers" the parameters
2011-05-04 21:22:51 +02:00
used for the last detection. In this case, the detector may be used for consistent numbers
of keypoints in a set of temporally related images, such as video streams or
panorama series.
2011-05-04 21:22:51 +02:00
``DynamicAdaptedFeatureDetector`` uses another detector such as FAST or SURF to do the dirty work,
with the help of ``AdjusterAdapter`` .
2011-05-12 01:31:50 +02:00
If the detected number of features is not large enough,
2011-05-04 21:22:51 +02:00
``AdjusterAdapter`` adjusts the detection parameters so that the next detection
2011-05-15 22:56:53 +02:00
results in a bigger or smaller number of features. This is repeated until either the number of desired features are found
or the parameters are maxed out.
2011-05-04 21:22:51 +02:00
Adapters can be easily implemented for any detector via the
``AdjusterAdapter`` interface.
2011-05-12 01:31:50 +02:00
Beware that this is not thread-safe since the adjustment of parameters requires modification of the feature detector class instance.
Example of creating ``DynamicAdaptedFeatureDetector`` : ::
//sample usage:
2011-02-26 12:05:10 +01:00
//will create a detector that attempts to find
//100 - 110 FAST Keypoints, and will at most run
2011-02-26 12:05:10 +01:00
//FAST feature detection 10 times until that
//number of keypoints are found
Ptr<FeatureDetector> detector(new DynamicAdaptedFeatureDetector (100, 110, 10,
new FastAdjuster(20,true)));
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
2011-03-03 08:29:55 +01:00
.. index:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector
----------------------------------------------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: DynamicAdaptedFeatureDetector::DynamicAdaptedFeatureDetector( const Ptr<AdjusterAdapter>& adjuster, int min_features, int max_features, int max_iters )
2011-03-03 08:29:55 +01:00
2011-05-15 22:56:53 +02:00
Constructs the class.
2011-03-03 08:29:55 +01:00
2011-05-12 01:31:50 +02:00
:param adjuster: :ref:`AdjusterAdapter` that detects features and adjusts parameters.
2011-03-03 08:29:55 +01:00
:param min_features: Minimum desired number of features.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
:param max_features: Maximum desired number of features.
2011-03-03 08:29:55 +01:00
:param max_iters: Maximum number of times to try adjusting the feature detector parameters. For :ref:`FastAdjuster` , this number can be high, but with ``Star`` or ``Surf`` many iterations can be time-comsuming. At each iteration the detector is rerun.
2011-03-03 08:29:55 +01:00
.. index:: AdjusterAdapter
AdjusterAdapter
---------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: AdjusterAdapter
2011-03-03 08:29:55 +01:00
2011-05-12 01:31:50 +02:00
Class providing an interface for adjusting parameters of a feature detector. This interface is used by :ref:`DynamicAdaptedFeatureDetector` . It is a wrapper for :ref:`FeatureDetector` that enables adjusting parameters after feature detection. ::
2011-03-03 08:29:55 +01:00
class AdjusterAdapter: public FeatureDetector
{
public:
virtual ~AdjusterAdapter() {}
virtual void tooFew(int min, int n_detected) = 0;
virtual void tooMany(int max, int n_detected) = 0;
virtual bool good() const = 0;
};
See
:ref:`FastAdjuster`,
:ref:`StarAdjuster`,
:ref:`SurfAdjuster` for concrete implementations.
2011-03-03 08:29:55 +01:00
.. index:: AdjusterAdapter::tooFew
AdjusterAdapter::tooFew
---------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: void AdjusterAdapter::tooFew(int min, int n_detected)
2011-03-03 08:29:55 +01:00
2011-05-12 01:31:50 +02:00
Adjusts the detector parameters to detect more features.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
:param min: Minimum desired number of features.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
:param n_detected: Number of features detected during the latest run.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
Example: ::
2011-03-03 08:29:55 +01:00
void FastAdjuster::tooFew(int min, int n_detected)
{
thresh_--;
}
.. index:: AdjusterAdapter::tooMany
AdjusterAdapter::tooMany
----------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: void AdjusterAdapter::tooMany(int max, int n_detected)
2011-03-03 08:29:55 +01:00
Adjusts the detector parameters to detect less features.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
:param max: Maximum desired number of features.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
:param n_detected: Number of features detected during the latest run.
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
Example: ::
2011-03-03 08:29:55 +01:00
void FastAdjuster::tooMany(int min, int n_detected)
{
thresh_++;
}
.. index:: AdjusterAdapter::good
AdjusterAdapter::good
-------------------------
2011-05-12 01:31:50 +02:00
.. cpp:function:: bool AdjusterAdapter::good() const
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
Returns false if the detector parameters cannot be adjusted any more.
Example: ::
2011-03-03 08:29:55 +01:00
bool FastAdjuster::good() const
{
return (thresh_ > 1) && (thresh_ < 200);
}
.. index:: FastAdjuster
FastAdjuster
------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: FastAdjuster
2011-03-03 08:29:55 +01:00
2011-05-15 22:56:53 +02:00
:ref:`AdjusterAdapter` for :ref:`FastFeatureDetector`. This class decreases or increases the threshold value by 1. ::
2011-03-03 08:29:55 +01:00
class FastAdjuster FastAdjuster: public AdjusterAdapter
{
public:
FastAdjuster(int init_thresh = 20, bool nonmax = true);
...
};
.. index:: StarAdjuster
StarAdjuster
------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: StarAdjuster
2011-03-03 08:29:55 +01:00
2011-05-15 22:56:53 +02:00
:ref:`AdjusterAdapter` for :ref:`StarFeatureDetector`. This class adjusts the ``responseThreshhold`` of ``StarFeatureDetector``. ::
2011-03-03 08:29:55 +01:00
class StarAdjuster: public AdjusterAdapter
{
StarAdjuster(double initial_thresh = 30.0);
...
};
.. index:: SurfAdjuster
SurfAdjuster
------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: SurfAdjuster
2011-03-03 08:29:55 +01:00
2011-05-15 22:56:53 +02:00
:ref:`AdjusterAdapter` for :ref:`SurfFeatureDetector`. This class adjusts the ``hessianThreshold`` of ``SurfFeatureDetector``. ::
2011-03-03 08:29:55 +01:00
class SurfAdjuster: public SurfAdjuster
{
SurfAdjuster();
...
};
.. index:: FeatureDetector
FeatureDetector
---------------
2011-05-12 01:31:50 +02:00
.. cpp:class:: FeatureDetector
2011-03-03 08:29:55 +01:00
2011-05-04 21:22:51 +02:00
Abstract base class for 2D image feature detectors ::
2011-03-03 08:29:55 +01:00
class CV_EXPORTS FeatureDetector
{
public:
virtual ~FeatureDetector();
void detect( const Mat& image, vector<KeyPoint>& keypoints,
const Mat& mask=Mat() ) const;
void detect( const vector<Mat>& images,
vector<vector<KeyPoint> >& keypoints,
const vector<Mat>& masks=vector<Mat>() ) const;
virtual void read(const FileNode&);
virtual void write(FileStorage&) const;
static Ptr<FeatureDetector> create( const string& detectorType );
protected:
...
};