2010-07-16 14:54:53 +02:00
|
|
|
/* dlalsa.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 19:44:00 +02:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 14:54:53 +02:00
|
|
|
|
2010-05-11 19:44:00 +02:00
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static doublereal c_b7 = 1.;
|
|
|
|
static doublereal c_b8 = 0.;
|
|
|
|
static integer c__2 = 2;
|
|
|
|
|
|
|
|
/* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n,
|
|
|
|
integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
|
|
|
|
ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k,
|
|
|
|
doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
|
|
|
|
poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
|
|
|
|
perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
|
|
|
|
work, integer *iwork, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1,
|
|
|
|
b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1,
|
|
|
|
difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
|
|
|
|
u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1,
|
|
|
|
i__2;
|
|
|
|
|
|
|
|
/* Builtin functions */
|
|
|
|
integer pow_ii(integer *, integer *);
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1,
|
|
|
|
nlp1, lvl2, nrp1, nlvl, sqre;
|
|
|
|
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
|
|
|
|
integer *, doublereal *, doublereal *, integer *, doublereal *,
|
|
|
|
integer *, doublereal *, doublereal *, integer *);
|
|
|
|
integer inode, ndiml, ndimr;
|
|
|
|
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
|
|
|
|
doublereal *, integer *), dlals0_(integer *, integer *, integer *,
|
|
|
|
integer *, integer *, doublereal *, integer *, doublereal *,
|
|
|
|
integer *, integer *, integer *, integer *, integer *, doublereal
|
|
|
|
*, integer *, doublereal *, doublereal *, doublereal *,
|
|
|
|
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
|
|
|
|
integer *), dlasdt_(integer *, integer *, integer *, integer *,
|
|
|
|
integer *, integer *, integer *), xerbla_(char *, integer *);
|
|
|
|
|
|
|
|
|
2010-07-16 14:54:53 +02:00
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
2010-05-11 19:44:00 +02:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DLALSA is an itermediate step in solving the least squares problem */
|
|
|
|
/* by computing the SVD of the coefficient matrix in compact form (The */
|
|
|
|
/* singular vectors are computed as products of simple orthorgonal */
|
|
|
|
/* matrices.). */
|
|
|
|
|
|
|
|
/* If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector */
|
|
|
|
/* matrix of an upper bidiagonal matrix to the right hand side; and if */
|
|
|
|
/* ICOMPQ = 1, DLALSA applies the right singular vector matrix to the */
|
|
|
|
/* right hand side. The singular vector matrices were generated in */
|
|
|
|
/* compact form by DLALSA. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
|
|
|
|
/* ICOMPQ (input) INTEGER */
|
|
|
|
/* Specifies whether the left or the right singular vector */
|
|
|
|
/* matrix is involved. */
|
|
|
|
/* = 0: Left singular vector matrix */
|
|
|
|
/* = 1: Right singular vector matrix */
|
|
|
|
|
|
|
|
/* SMLSIZ (input) INTEGER */
|
|
|
|
/* The maximum size of the subproblems at the bottom of the */
|
|
|
|
/* computation tree. */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The row and column dimensions of the upper bidiagonal matrix. */
|
|
|
|
|
|
|
|
/* NRHS (input) INTEGER */
|
|
|
|
/* The number of columns of B and BX. NRHS must be at least 1. */
|
|
|
|
|
|
|
|
/* B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
|
|
|
|
/* On input, B contains the right hand sides of the least */
|
|
|
|
/* squares problem in rows 1 through M. */
|
|
|
|
/* On output, B contains the solution X in rows 1 through N. */
|
|
|
|
|
|
|
|
/* LDB (input) INTEGER */
|
|
|
|
/* The leading dimension of B in the calling subprogram. */
|
|
|
|
/* LDB must be at least max(1,MAX( M, N ) ). */
|
|
|
|
|
|
|
|
/* BX (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
|
|
|
|
/* On exit, the result of applying the left or right singular */
|
|
|
|
/* vector matrix to B. */
|
|
|
|
|
|
|
|
/* LDBX (input) INTEGER */
|
|
|
|
/* The leading dimension of BX. */
|
|
|
|
|
|
|
|
/* U (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
|
|
|
|
/* On entry, U contains the left singular vector matrices of all */
|
|
|
|
/* subproblems at the bottom level. */
|
|
|
|
|
|
|
|
/* LDU (input) INTEGER, LDU = > N. */
|
|
|
|
/* The leading dimension of arrays U, VT, DIFL, DIFR, */
|
|
|
|
/* POLES, GIVNUM, and Z. */
|
|
|
|
|
|
|
|
/* VT (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
|
|
|
|
/* On entry, VT' contains the right singular vector matrices of */
|
|
|
|
/* all subproblems at the bottom level. */
|
|
|
|
|
|
|
|
/* K (input) INTEGER array, dimension ( N ). */
|
|
|
|
|
|
|
|
/* DIFL (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
|
|
|
|
/* where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
|
|
|
|
|
|
|
|
/* DIFR (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
|
|
|
/* On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
|
|
|
|
/* distances between singular values on the I-th level and */
|
|
|
|
/* singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
|
|
|
|
/* record the normalizing factors of the right singular vectors */
|
|
|
|
/* matrices of subproblems on I-th level. */
|
|
|
|
|
|
|
|
/* Z (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
|
|
|
|
/* On entry, Z(1, I) contains the components of the deflation- */
|
|
|
|
/* adjusted updating row vector for subproblems on the I-th */
|
|
|
|
/* level. */
|
|
|
|
|
|
|
|
/* POLES (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
|
|
|
/* On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
|
|
|
|
/* singular values involved in the secular equations on the I-th */
|
|
|
|
/* level. */
|
|
|
|
|
|
|
|
/* GIVPTR (input) INTEGER array, dimension ( N ). */
|
|
|
|
/* On entry, GIVPTR( I ) records the number of Givens */
|
|
|
|
/* rotations performed on the I-th problem on the computation */
|
|
|
|
/* tree. */
|
|
|
|
|
|
|
|
/* GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
|
|
|
|
/* On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
|
|
|
|
/* locations of Givens rotations performed on the I-th level on */
|
|
|
|
/* the computation tree. */
|
|
|
|
|
|
|
|
/* LDGCOL (input) INTEGER, LDGCOL = > N. */
|
|
|
|
/* The leading dimension of arrays GIVCOL and PERM. */
|
|
|
|
|
|
|
|
/* PERM (input) INTEGER array, dimension ( LDGCOL, NLVL ). */
|
|
|
|
/* On entry, PERM(*, I) records permutations done on the I-th */
|
|
|
|
/* level of the computation tree. */
|
|
|
|
|
|
|
|
/* GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
|
|
|
|
/* On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
|
|
|
|
/* values of Givens rotations performed on the I-th level on the */
|
|
|
|
/* computation tree. */
|
|
|
|
|
|
|
|
/* C (input) DOUBLE PRECISION array, dimension ( N ). */
|
|
|
|
/* On entry, if the I-th subproblem is not square, */
|
|
|
|
/* C( I ) contains the C-value of a Givens rotation related to */
|
|
|
|
/* the right null space of the I-th subproblem. */
|
|
|
|
|
|
|
|
/* S (input) DOUBLE PRECISION array, dimension ( N ). */
|
|
|
|
/* On entry, if the I-th subproblem is not square, */
|
|
|
|
/* S( I ) contains the S-value of a Givens rotation related to */
|
|
|
|
/* the right null space of the I-th subproblem. */
|
|
|
|
|
|
|
|
/* WORK (workspace) DOUBLE PRECISION array. */
|
|
|
|
/* The dimension must be at least N. */
|
|
|
|
|
|
|
|
/* IWORK (workspace) INTEGER array. */
|
|
|
|
/* The dimension must be at least 3 * N */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit. */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* Based on contributions by */
|
|
|
|
/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
|
|
|
|
/* California at Berkeley, USA */
|
|
|
|
/* Osni Marques, LBNL/NERSC, USA */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
b_dim1 = *ldb;
|
|
|
|
b_offset = 1 + b_dim1;
|
|
|
|
b -= b_offset;
|
|
|
|
bx_dim1 = *ldbx;
|
|
|
|
bx_offset = 1 + bx_dim1;
|
|
|
|
bx -= bx_offset;
|
|
|
|
givnum_dim1 = *ldu;
|
|
|
|
givnum_offset = 1 + givnum_dim1;
|
|
|
|
givnum -= givnum_offset;
|
|
|
|
poles_dim1 = *ldu;
|
|
|
|
poles_offset = 1 + poles_dim1;
|
|
|
|
poles -= poles_offset;
|
|
|
|
z_dim1 = *ldu;
|
|
|
|
z_offset = 1 + z_dim1;
|
|
|
|
z__ -= z_offset;
|
|
|
|
difr_dim1 = *ldu;
|
|
|
|
difr_offset = 1 + difr_dim1;
|
|
|
|
difr -= difr_offset;
|
|
|
|
difl_dim1 = *ldu;
|
|
|
|
difl_offset = 1 + difl_dim1;
|
|
|
|
difl -= difl_offset;
|
|
|
|
vt_dim1 = *ldu;
|
|
|
|
vt_offset = 1 + vt_dim1;
|
|
|
|
vt -= vt_offset;
|
|
|
|
u_dim1 = *ldu;
|
|
|
|
u_offset = 1 + u_dim1;
|
|
|
|
u -= u_offset;
|
|
|
|
--k;
|
|
|
|
--givptr;
|
|
|
|
perm_dim1 = *ldgcol;
|
|
|
|
perm_offset = 1 + perm_dim1;
|
|
|
|
perm -= perm_offset;
|
|
|
|
givcol_dim1 = *ldgcol;
|
|
|
|
givcol_offset = 1 + givcol_dim1;
|
|
|
|
givcol -= givcol_offset;
|
|
|
|
--c__;
|
|
|
|
--s;
|
|
|
|
--work;
|
|
|
|
--iwork;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
|
|
|
|
if (*icompq < 0 || *icompq > 1) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (*smlsiz < 3) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*n < *smlsiz) {
|
|
|
|
*info = -3;
|
|
|
|
} else if (*nrhs < 1) {
|
|
|
|
*info = -4;
|
|
|
|
} else if (*ldb < *n) {
|
|
|
|
*info = -6;
|
|
|
|
} else if (*ldbx < *n) {
|
|
|
|
*info = -8;
|
|
|
|
} else if (*ldu < *n) {
|
|
|
|
*info = -10;
|
|
|
|
} else if (*ldgcol < *n) {
|
|
|
|
*info = -19;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("DLALSA", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Book-keeping and setting up the computation tree. */
|
|
|
|
|
|
|
|
inode = 1;
|
|
|
|
ndiml = inode + *n;
|
|
|
|
ndimr = ndiml + *n;
|
|
|
|
|
|
|
|
dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr],
|
|
|
|
smlsiz);
|
|
|
|
|
|
|
|
/* The following code applies back the left singular vector factors. */
|
|
|
|
/* For applying back the right singular vector factors, go to 50. */
|
|
|
|
|
|
|
|
if (*icompq == 1) {
|
|
|
|
goto L50;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The nodes on the bottom level of the tree were solved */
|
|
|
|
/* by DLASDQ. The corresponding left and right singular vector */
|
|
|
|
/* matrices are in explicit form. First apply back the left */
|
|
|
|
/* singular vector matrices. */
|
|
|
|
|
|
|
|
ndb1 = (nd + 1) / 2;
|
|
|
|
i__1 = nd;
|
|
|
|
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
|
|
|
|
|
|
|
/* IC : center row of each node */
|
|
|
|
/* NL : number of rows of left subproblem */
|
|
|
|
/* NR : number of rows of right subproblem */
|
|
|
|
/* NLF: starting row of the left subproblem */
|
|
|
|
/* NRF: starting row of the right subproblem */
|
|
|
|
|
|
|
|
i1 = i__ - 1;
|
|
|
|
ic = iwork[inode + i1];
|
|
|
|
nl = iwork[ndiml + i1];
|
|
|
|
nr = iwork[ndimr + i1];
|
|
|
|
nlf = ic - nl;
|
|
|
|
nrf = ic + 1;
|
|
|
|
dgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf
|
|
|
|
+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
|
|
|
|
dgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf
|
|
|
|
+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Next copy the rows of B that correspond to unchanged rows */
|
|
|
|
/* in the bidiagonal matrix to BX. */
|
|
|
|
|
|
|
|
i__1 = nd;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
ic = iwork[inode + i__ - 1];
|
|
|
|
dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Finally go through the left singular vector matrices of all */
|
|
|
|
/* the other subproblems bottom-up on the tree. */
|
|
|
|
|
|
|
|
j = pow_ii(&c__2, &nlvl);
|
|
|
|
sqre = 0;
|
|
|
|
|
|
|
|
for (lvl = nlvl; lvl >= 1; --lvl) {
|
|
|
|
lvl2 = (lvl << 1) - 1;
|
|
|
|
|
|
|
|
/* find the first node LF and last node LL on */
|
|
|
|
/* the current level LVL */
|
|
|
|
|
|
|
|
if (lvl == 1) {
|
|
|
|
lf = 1;
|
|
|
|
ll = 1;
|
|
|
|
} else {
|
|
|
|
i__1 = lvl - 1;
|
|
|
|
lf = pow_ii(&c__2, &i__1);
|
|
|
|
ll = (lf << 1) - 1;
|
|
|
|
}
|
|
|
|
i__1 = ll;
|
|
|
|
for (i__ = lf; i__ <= i__1; ++i__) {
|
|
|
|
im1 = i__ - 1;
|
|
|
|
ic = iwork[inode + im1];
|
|
|
|
nl = iwork[ndiml + im1];
|
|
|
|
nr = iwork[ndimr + im1];
|
|
|
|
nlf = ic - nl;
|
|
|
|
nrf = ic + 1;
|
|
|
|
--j;
|
|
|
|
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
|
|
|
|
b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
|
|
|
|
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
|
|
|
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
|
|
|
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
|
|
|
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
|
|
|
j], &s[j], &work[1], info);
|
|
|
|
/* L30: */
|
|
|
|
}
|
|
|
|
/* L40: */
|
|
|
|
}
|
|
|
|
goto L90;
|
|
|
|
|
|
|
|
/* ICOMPQ = 1: applying back the right singular vector factors. */
|
|
|
|
|
|
|
|
L50:
|
|
|
|
|
|
|
|
/* First now go through the right singular vector matrices of all */
|
|
|
|
/* the tree nodes top-down. */
|
|
|
|
|
|
|
|
j = 0;
|
|
|
|
i__1 = nlvl;
|
|
|
|
for (lvl = 1; lvl <= i__1; ++lvl) {
|
|
|
|
lvl2 = (lvl << 1) - 1;
|
|
|
|
|
|
|
|
/* Find the first node LF and last node LL on */
|
|
|
|
/* the current level LVL. */
|
|
|
|
|
|
|
|
if (lvl == 1) {
|
|
|
|
lf = 1;
|
|
|
|
ll = 1;
|
|
|
|
} else {
|
|
|
|
i__2 = lvl - 1;
|
|
|
|
lf = pow_ii(&c__2, &i__2);
|
|
|
|
ll = (lf << 1) - 1;
|
|
|
|
}
|
|
|
|
i__2 = lf;
|
|
|
|
for (i__ = ll; i__ >= i__2; --i__) {
|
|
|
|
im1 = i__ - 1;
|
|
|
|
ic = iwork[inode + im1];
|
|
|
|
nl = iwork[ndiml + im1];
|
|
|
|
nr = iwork[ndimr + im1];
|
|
|
|
nlf = ic - nl;
|
|
|
|
nrf = ic + 1;
|
|
|
|
if (i__ == ll) {
|
|
|
|
sqre = 0;
|
|
|
|
} else {
|
|
|
|
sqre = 1;
|
|
|
|
}
|
|
|
|
++j;
|
|
|
|
dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
|
|
|
|
nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
|
|
|
|
givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
|
|
|
|
givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
|
|
|
|
poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf +
|
|
|
|
lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
|
|
|
|
j], &s[j], &work[1], info);
|
|
|
|
/* L60: */
|
|
|
|
}
|
|
|
|
/* L70: */
|
|
|
|
}
|
|
|
|
|
|
|
|
/* The nodes on the bottom level of the tree were solved */
|
|
|
|
/* by DLASDQ. The corresponding right singular vector */
|
|
|
|
/* matrices are in explicit form. Apply them back. */
|
|
|
|
|
|
|
|
ndb1 = (nd + 1) / 2;
|
|
|
|
i__1 = nd;
|
|
|
|
for (i__ = ndb1; i__ <= i__1; ++i__) {
|
|
|
|
i1 = i__ - 1;
|
|
|
|
ic = iwork[inode + i1];
|
|
|
|
nl = iwork[ndiml + i1];
|
|
|
|
nr = iwork[ndimr + i1];
|
|
|
|
nlp1 = nl + 1;
|
|
|
|
if (i__ == nd) {
|
|
|
|
nrp1 = nr;
|
|
|
|
} else {
|
|
|
|
nrp1 = nr + 1;
|
|
|
|
}
|
|
|
|
nlf = ic - nl;
|
|
|
|
nrf = ic + 1;
|
|
|
|
dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
|
|
|
|
b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
|
|
|
|
dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
|
|
|
|
b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
|
|
|
|
/* L80: */
|
|
|
|
}
|
|
|
|
|
|
|
|
L90:
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DLALSA */
|
|
|
|
|
|
|
|
} /* dlalsa_ */
|