66 lines
1.9 KiB
C++
66 lines
1.9 KiB
C++
|
#include "opencv2/highgui/highgui.hpp"
|
||
|
#include "opencv2/core/core.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
const int MAX_CLUSTERS = 5;
|
||
|
Scalar colorTab[] =
|
||
|
{
|
||
|
Scalar(0, 0, 255),
|
||
|
Scalar(0,255,0),
|
||
|
Scalar(255,100,100),
|
||
|
Scalar(255,0,255),
|
||
|
Scalar(0,255,255)
|
||
|
};
|
||
|
|
||
|
Mat img(500, 500, CV_8UC3);
|
||
|
RNG rng(12345);
|
||
|
|
||
|
for(;;)
|
||
|
{
|
||
|
int k, clusterCount = rng.uniform(2, MAX_CLUSTERS+1);
|
||
|
int i, sampleCount = rng.uniform(1, 1001);
|
||
|
Mat points(sampleCount, 1, CV_32FC2), labels;
|
||
|
|
||
|
clusterCount = MIN(clusterCount, sampleCount);
|
||
|
Mat centers(clusterCount, 1, points.type());
|
||
|
|
||
|
/* generate random sample from multigaussian distribution */
|
||
|
for( k = 0; k < clusterCount; k++ )
|
||
|
{
|
||
|
Point center;
|
||
|
center.x = rng.uniform(0, img.cols);
|
||
|
center.y = rng.uniform(0, img.rows);
|
||
|
Mat pointChunk = points.rowRange(k*sampleCount/clusterCount,
|
||
|
k == clusterCount - 1 ? sampleCount :
|
||
|
(k+1)*sampleCount/clusterCount);
|
||
|
rng.fill(pointChunk, CV_RAND_NORMAL, Scalar(center.x, center.y), Scalar(img.cols*0.05, img.rows*0.05));
|
||
|
}
|
||
|
|
||
|
randShuffle(points, 1, &rng);
|
||
|
|
||
|
kmeans(points, clusterCount, labels,
|
||
|
TermCriteria( CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10, 1.0),
|
||
|
3, KMEANS_PP_CENTERS, ¢ers);
|
||
|
|
||
|
img = Scalar::all(0);
|
||
|
|
||
|
for( i = 0; i < sampleCount; i++ )
|
||
|
{
|
||
|
int clusterIdx = labels.at<int>(i);
|
||
|
Point ipt = points.at<Point2f>(i);
|
||
|
circle( img, ipt, 2, colorTab[clusterIdx], CV_FILLED, CV_AA );
|
||
|
}
|
||
|
|
||
|
imshow("clusters", img);
|
||
|
|
||
|
char key = (char)waitKey();
|
||
|
if( key == 27 || key == 'q' || key == 'Q' ) // 'ESC'
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|