opencv/modules/ml/doc/support_vector_machines.rst

234 lines
9.5 KiB
ReStructuredText
Raw Normal View History

Support Vector Machines
=======================
.. highlight:: cpp
Originally, support vector machines (SVM) was a technique for building an optimal (in some sense) binary (2-class) classifier. Then the technique has been extended to regression and clustering problems. SVM is a partial case of kernel-based methods, it maps feature vectors into higher-dimensional space using some kernel function, and then it builds an optimal linear discriminating function in this space (or an optimal hyper-plane that fits into the training data, ...). in the case of SVM the kernel is not defined explicitly. Instead, a distance between any 2 points in the hyper-space needs to be defined.
The solution is optimal in a sense that the margin between the separating hyper-plane and the nearest feature vectors from the both classes (in the case of 2-class classifier) is maximal. The feature vectors that are the closest to the hyper-plane are called "support vectors", meaning that the position of other vectors does not affect the hyper-plane (the decision function).
There are a lot of good references on SVM. Here are only a few ones to start with.
*
**[Burges98] C. Burges. "A tutorial on support vector machines for pattern recognition", Knowledge Discovery and Data Mining 2(2), 1998.**
2011-02-26 12:05:10 +01:00
(available online at
http://citeseer.ist.psu.edu/burges98tutorial.html
).
*
**LIBSVM - A Library for Support Vector Machines. By Chih-Chung Chang and Chih-Jen Lin**
(
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
)
.. index:: CvSVM
.. _CvSVM:
CvSVM
-----
.. ctype:: CvSVM
2011-02-26 12:05:10 +01:00
Support Vector Machines. ::
class CvSVM : public CvStatModel
{
public:
// SVM type
enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
2011-02-26 12:05:10 +01:00
// SVM kernel type
enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };
2011-02-26 12:05:10 +01:00
// SVM params type
enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
2011-02-26 12:05:10 +01:00
CvSVM();
virtual ~CvSVM();
2011-02-26 12:05:10 +01:00
CvSVM( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
CvSVMParams _params=CvSVMParams() );
2011-02-26 12:05:10 +01:00
virtual bool train( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx=0, const CvMat* _sample_idx=0,
CvSVMParams _params=CvSVMParams() );
2011-02-26 12:05:10 +01:00
virtual bool train_auto( const CvMat* _train_data, const CvMat* _responses,
const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams _params,
int k_fold = 10,
CvParamGrid C_grid = get_default_grid(CvSVM::C),
CvParamGrid gamma_grid = get_default_grid(CvSVM::GAMMA),
CvParamGrid p_grid = get_default_grid(CvSVM::P),
CvParamGrid nu_grid = get_default_grid(CvSVM::NU),
CvParamGrid coef_grid = get_default_grid(CvSVM::COEF),
CvParamGrid degree_grid = get_default_grid(CvSVM::DEGREE) );
2011-02-26 12:05:10 +01:00
virtual float predict( const CvMat* _sample ) const;
virtual int get_support_vector_count() const;
virtual const float* get_support_vector(int i) const;
virtual CvSVMParams get_params() const { return params; };
virtual void clear();
2011-02-26 12:05:10 +01:00
static CvParamGrid get_default_grid( int param_id );
2011-02-26 12:05:10 +01:00
virtual void save( const char* filename, const char* name=0 );
virtual void load( const char* filename, const char* name=0 );
2011-02-26 12:05:10 +01:00
virtual void write( CvFileStorage* storage, const char* name );
virtual void read( CvFileStorage* storage, CvFileNode* node );
int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
2011-02-26 12:05:10 +01:00
protected:
...
};
..
.. index:: CvSVMParams
.. _CvSVMParams:
CvSVMParams
-----------
.. ctype:: CvSVMParams
2011-02-26 12:05:10 +01:00
SVM training parameters. ::
struct CvSVMParams
{
CvSVMParams();
CvSVMParams( int _svm_type, int _kernel_type,
double _degree, double _gamma, double _coef0,
double _C, double _nu, double _p,
CvMat* _class_weights, CvTermCriteria _term_crit );
2011-02-26 12:05:10 +01:00
int svm_type;
int kernel_type;
double degree; // for poly
double gamma; // for poly/rbf/sigmoid
double coef0; // for poly/sigmoid
2011-02-26 12:05:10 +01:00
double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
double p; // for CV_SVM_EPS_SVR
CvMat* class_weights; // for CV_SVM_C_SVC
CvTermCriteria term_crit; // termination criteria
};
..
2011-02-26 12:05:10 +01:00
The structure must be initialized and passed to the training method of
:ref:`CvSVM` .
.. index:: CvSVM::train
.. _CvSVM::train:
CvSVM::train
------------
.. cfunction:: bool CvSVM::train( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx=0, const CvMat* _sample_idx=0, CvSVMParams _params=CvSVMParams() )
Trains SVM.
2011-02-26 12:05:10 +01:00
The method trains the SVM model. It follows the conventions of the generic ``train`` "method" with the following limitations: only the CV_ROW_SAMPLE data layout is supported, the input variables are all ordered, the output variables can be either categorical ( ``_params.svm_type=CvSVM::C_SVC`` or ``_params.svm_type=CvSVM::NU_SVC`` ), or ordered ( ``_params.svm_type=CvSVM::EPS_SVR`` or ``_params.svm_type=CvSVM::NU_SVR`` ), or not required at all ( ``_params.svm_type=CvSVM::ONE_CLASS`` ), missing measurements are not supported.
2011-02-26 12:05:10 +01:00
All the other parameters are gathered in
:ref:`CvSVMParams` structure.
.. index:: CvSVM::train_auto
.. _CvSVM::train_auto:
CvSVM::train_auto
-----------------
.. cfunction:: train_auto( const CvMat* _train_data, const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx, CvSVMParams params, int k_fold = 10, CvParamGrid C_grid = get_default_grid(CvSVM::C), CvParamGrid gamma_grid = get_default_grid(CvSVM::GAMMA), CvParamGrid p_grid = get_default_grid(CvSVM::P), CvParamGrid nu_grid = get_default_grid(CvSVM::NU), CvParamGrid coef_grid = get_default_grid(CvSVM::COEF), CvParamGrid degree_grid = get_default_grid(CvSVM::DEGREE) )
Trains SVM with optimal parameters.
2011-02-26 12:05:10 +01:00
:param k_fold: Cross-validation parameter. The training set is divided into ``k_fold`` subsets, one subset being used to train the model, the others forming the test set. So, the SVM algorithm is executed ``k_fold`` times.
The method trains the SVM model automatically by choosing the optimal
2011-02-26 12:05:10 +01:00
parameters ``C``,``gamma``,``p``,``nu``,``coef0``,``degree`` from
:ref:`CvSVMParams` . By optimal
one means that the cross-validation estimate of the test set error
is minimal. The parameters are iterated by a logarithmic grid, for
2011-02-26 12:05:10 +01:00
example, the parameter ``gamma`` takes the values in the set
(
:math:`min`,:math:`min*step`,:math:`min*{step}^2` , ...
:math:`min*{step}^n` )
where
:math:`min` is ``gamma_grid.min_val``,:math:`step` is ``gamma_grid.step`` , and
:math:`n` is the maximal index such, that
.. math::
2011-02-26 12:05:10 +01:00
\texttt{gamma\_grid.min\_val} * \texttt{gamma\_grid.step} ^n < \texttt{gamma\_grid.max\_val}
2011-02-26 12:05:10 +01:00
So ``step`` must always be greater than 1.
2011-02-26 12:05:10 +01:00
If there is no need in optimization in some parameter, the according grid step should be set to any value less or equal to 1. For example, to avoid optimization in ``gamma`` one should set ``gamma_grid.step = 0``,``gamma_grid.min_val``,``gamma_grid.max_val`` being arbitrary numbers. In this case, the value ``params.gamma`` will be taken for ``gamma`` .
And, finally, if the optimization in some parameter is required, but
2011-02-26 12:05:10 +01:00
there is no idea of the corresponding grid, one may call the function ``CvSVM::get_default_grid`` . In
order to generate a grid, say, for ``gamma`` , call ``CvSVM::get_default_grid(CvSVM::GAMMA)`` .
2011-02-26 12:05:10 +01:00
This function works for the case of classification
( ``params.svm_type=CvSVM::C_SVC`` or ``params.svm_type=CvSVM::NU_SVC`` )
as well as for the regression
( ``params.svm_type=CvSVM::EPS_SVR`` or ``params.svm_type=CvSVM::NU_SVR`` ). If ``params.svm_type=CvSVM::ONE_CLASS`` , no optimization is made and the usual SVM with specified in ``params`` parameters is executed.
.. index:: CvSVM::get_default_grid
.. _CvSVM::get_default_grid:
CvSVM::get_default_grid
-----------------------
.. cfunction:: CvParamGrid CvSVM::get_default_grid( int param_id )
Generates a grid for the SVM parameters.
2011-02-26 12:05:10 +01:00
:param param_id: Must be one of the following:
* **CvSVM::C**
* **CvSVM::GAMMA**
2011-02-26 12:05:10 +01:00
* **CvSVM::P**
2011-02-26 12:05:10 +01:00
* **CvSVM::NU**
2011-02-26 12:05:10 +01:00
* **CvSVM::COEF**
2011-02-26 12:05:10 +01:00
* **CvSVM::DEGREE**
.
2011-02-26 12:05:10 +01:00
The grid will be generated for the parameter with this ID.
2011-02-26 12:05:10 +01:00
The function generates a grid for the specified parameter of the SVM algorithm. The grid may be passed to the function ``CvSVM::train_auto`` .
.. index:: CvSVM::get_params
.. _CvSVM::get_params:
CvSVM::get_params
-----------------
.. cfunction:: CvSVMParams CvSVM::get_params() const
Returns the current SVM parameters.
2011-02-26 12:05:10 +01:00
This function may be used to get the optimal parameters that were obtained while automatically training ``CvSVM::train_auto`` .
.. index:: CvSVM::get_support_vector*
.. _CvSVM::get_support_vector*:
CvSVM::get_support_vector*
--------------------------
.. cfunction:: int CvSVM::get_support_vector_count() const
.. cfunction:: const float* CvSVM::get_support_vector(int i) const
Retrieves the number of support vectors and the particular vector.
The methods can be used to retrieve the set of support vectors.