opencv/modules/ocl/perf/perf_imgwarp.cpp

365 lines
11 KiB
C++
Raw Normal View History

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Fangfang Bai, fangfang@multicorewareinc.com
// Jin Ma, jin@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "perf_precomp.hpp"
using namespace perf;
using std::tr1::tuple;
using std::tr1::get;
///////////// WarpAffine ////////////////////////
typedef Size_MatType WarpAffineFixture;
PERF_TEST_P(WarpAffineFixture, WarpAffine,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
static const double coeffs[2][3] =
{
{ cos(CV_PI / 6), -sin(CV_PI / 6), 100.0 },
{ sin(CV_PI / 6), cos(CV_PI / 6), -100.0 }
};
Mat M(2, 3, CV_64F, (void *)coeffs);
const int interpolation = INTER_NEAREST;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
OCL_TEST_CYCLE() cv::ocl::warpAffine(oclSrc, oclDst, M, srcSize, interpolation);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::warpAffine(src, dst, M, srcSize, interpolation);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// WarpPerspective ////////////////////////
typedef Size_MatType WarpPerspectiveFixture;
PERF_TEST_P(WarpPerspectiveFixture, WarpPerspective,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4)))
{
static const double coeffs[3][3] =
{
{cos(CV_PI / 6), -sin(CV_PI / 6), 100.0},
{sin(CV_PI / 6), cos(CV_PI / 6), -100.0},
{0.0, 0.0, 1.0}
};
Mat M(3, 3, CV_64F, (void *)coeffs);
const int interpolation = INTER_LINEAR;
const Size_MatType_t params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst)
.time(srcSize == OCL_SIZE_4000 ? 18 : srcSize == OCL_SIZE_2000 ? 5 : 2);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
OCL_TEST_CYCLE() cv::ocl::warpPerspective(oclSrc, oclDst, M, srcSize, interpolation);
oclDst.download(dst);
SANITY_CHECK(dst);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::warpPerspective(src, dst, M, srcSize, interpolation);
SANITY_CHECK(dst);
}
else
OCL_PERF_ELSE
}
///////////// resize ////////////////////////
CV_ENUM(resizeInterType, INTER_NEAREST, INTER_LINEAR)
typedef tuple<Size, MatType, resizeInterType, double> resizeParams;
typedef TestBaseWithParam<resizeParams> resizeFixture;
PERF_TEST_P(resizeFixture, resize,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4),
resizeInterType::all(),
::testing::Values(0.5, 2.0)))
{
const resizeParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), interType = get<2>(params);
double scale = get<3>(params);
const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale));
checkDeviceMaxMemoryAllocSize(srcSize, type);
checkDeviceMaxMemoryAllocSize(dstSize, type);
Mat src(srcSize, type), dst;
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (interType == INTER_LINEAR && type == CV_8UC4 && OCL_SIZE_4000 == srcSize)
declare.time(11);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
OCL_TEST_CYCLE() cv::ocl::resize(oclSrc, oclDst, Size(), scale, scale, interType);
oclDst.download(dst);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, interType);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else
OCL_PERF_ELSE
}
typedef tuple<Size, MatType, double> resizeAreaParams;
typedef TestBaseWithParam<resizeAreaParams> resizeAreaFixture;
PERF_TEST_P(resizeAreaFixture, resize,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4, CV_32FC1, CV_32FC4),
2013-11-18 18:46:59 +04:00
::testing::Values(0.3, 0.5, 0.6)))
{
const resizeAreaParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params);
double scale = get<2>(params);
const Size dstSize(cvRound(srcSize.width * scale), cvRound(srcSize.height * scale));
checkDeviceMaxMemoryAllocSize(srcSize, type);
Mat src(srcSize, type), dst;
dst.create(dstSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
OCL_TEST_CYCLE() cv::ocl::resize(oclSrc, oclDst, Size(), scale, scale, cv::INTER_AREA);
oclDst.download(dst);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::resize(src, dst, Size(), scale, scale, cv::INTER_AREA);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else
OCL_PERF_ELSE
}
///////////// remap////////////////////////
CV_ENUM(RemapInterType, INTER_NEAREST, INTER_LINEAR)
typedef tuple<Size, MatType, RemapInterType> remapParams;
typedef TestBaseWithParam<remapParams> remapFixture;
PERF_TEST_P(remapFixture, remap,
::testing::Combine(OCL_TYPICAL_MAT_SIZES,
OCL_PERF_ENUM(CV_8UC1, CV_8UC4),
RemapInterType::all()))
{
const remapParams params = GetParam();
const Size srcSize = get<0>(params);
const int type = get<1>(params), interpolation = get<2>(params);
Mat src(srcSize, type), dst(srcSize, type);
declare.in(src, WARMUP_RNG).out(dst);
if (srcSize == OCL_SIZE_4000 && interpolation == INTER_LINEAR)
declare.time(9);
Mat xmap, ymap;
xmap.create(srcSize, CV_32FC1);
ymap.create(srcSize, CV_32FC1);
for (int i = 0; i < srcSize.height; ++i)
{
float * const xmap_row = xmap.ptr<float>(i);
float * const ymap_row = ymap.ptr<float>(i);
for (int j = 0; j < srcSize.width; ++j)
{
xmap_row[j] = (j - srcSize.width * 0.5f) * 0.75f + srcSize.width * 0.5f;
ymap_row[j] = (i - srcSize.height * 0.5f) * 0.75f + srcSize.height * 0.5f;
}
}
const int borderMode = BORDER_CONSTANT;
if (RUN_OCL_IMPL)
{
ocl::oclMat oclSrc(src), oclDst(srcSize, type);
ocl::oclMat oclXMap(xmap), oclYMap(ymap);
OCL_TEST_CYCLE() cv::ocl::remap(oclSrc, oclDst, oclXMap, oclYMap, interpolation, borderMode);
oclDst.download(dst);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() cv::remap(src, dst, xmap, ymap, interpolation, borderMode);
SANITY_CHECK(dst, 1 + DBL_EPSILON);
}
else
OCL_PERF_ELSE
}
///////////// buildWarpPerspectiveMaps ////////////////////////
static void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, Mat &xmap, Mat &ymap)
{
CV_Assert(M.rows == 3 && M.cols == 3);
CV_Assert(dsize.area() > 0);
xmap.create(dsize, CV_32FC1);
ymap.create(dsize, CV_32FC1);
float coeffs[3 * 3];
Mat coeffsMat(3, 3, CV_32F, (void *)coeffs);
if (inverse)
M.convertTo(coeffsMat, coeffsMat.type());
else
{
cv::Mat iM;
invert(M, iM);
iM.convertTo(coeffsMat, coeffsMat.type());
}
for (int y = 0; y < dsize.height; ++y)
{
float * const xmap_ptr = xmap.ptr<float>(y);
float * const ymap_ptr = ymap.ptr<float>(y);
for (int x = 0; x < dsize.width; ++x)
{
float coeff = 1.0f / (x * coeffs[6] + y * coeffs[7] + coeffs[8]);
xmap_ptr[x] = (x * coeffs[0] + y * coeffs[1] + coeffs[2]) * coeff;
ymap_ptr[x] = (x * coeffs[3] + y * coeffs[4] + coeffs[5]) * coeff;
}
}
}
typedef TestBaseWithParam<Size> buildWarpPerspectiveMapsFixture;
PERF_TEST_P(buildWarpPerspectiveMapsFixture, Inverse, OCL_TYPICAL_MAT_SIZES)
{
static const double coeffs[3][3] =
{
{cos(CV_PI / 6), -sin(CV_PI / 6), 100.0},
{sin(CV_PI / 6), cos(CV_PI / 6), -100.0},
{0.0, 0.0, 1.0}
};
Mat M(3, 3, CV_64F, (void *)coeffs);
const Size dsize = GetParam();
const double eps = 5e-4;
Mat xmap(dsize, CV_32FC1), ymap(dsize, CV_32FC1);
declare.in(M).out(xmap, ymap);
if (RUN_OCL_IMPL)
{
ocl::oclMat oclXMap(dsize, CV_32FC1), oclYMap(dsize, CV_32FC1);
OCL_TEST_CYCLE() cv::ocl::buildWarpPerspectiveMaps(M, true, dsize, oclXMap, oclYMap);
oclXMap.download(xmap);
oclYMap.download(ymap);
SANITY_CHECK(xmap, eps);
SANITY_CHECK(ymap, eps);
}
else if (RUN_PLAIN_IMPL)
{
TEST_CYCLE() buildWarpPerspectiveMaps(M, true, dsize, xmap, ymap);
SANITY_CHECK(xmap, eps);
SANITY_CHECK(ymap, eps);
}
else
OCL_PERF_ELSE
}