opencv/modules/gpu/doc/video.rst

696 lines
23 KiB
ReStructuredText
Raw Normal View History

2012-10-17 03:18:30 +04:00
Video Analysis
==============
.. highlight:: cpp
gpu::BroxOpticalFlow
--------------------
.. ocv:class:: gpu::BroxOpticalFlow
Class computing the optical flow for two images using Brox et al Optical Flow algorithm ([Brox2004]_). ::
class BroxOpticalFlow
{
public:
BroxOpticalFlow(float alpha_, float gamma_, float scale_factor_, int inner_iterations_, int outer_iterations_, int solver_iterations_);
//! Compute optical flow
//! frame0 - source frame (supports only CV_32FC1 type)
//! frame1 - frame to track (with the same size and type as frame0)
//! u - flow horizontal component (along x axis)
//! v - flow vertical component (along y axis)
void operator ()(const GpuMat& frame0, const GpuMat& frame1, GpuMat& u, GpuMat& v, Stream& stream = Stream::Null());
//! flow smoothness
float alpha;
//! gradient constancy importance
float gamma;
//! pyramid scale factor
float scale_factor;
//! number of lagged non-linearity iterations (inner loop)
int inner_iterations;
//! number of warping iterations (number of pyramid levels)
int outer_iterations;
//! number of linear system solver iterations
int solver_iterations;
GpuMat buf;
};
gpu::GoodFeaturesToTrackDetector_GPU
------------------------------------
.. ocv:class:: gpu::GoodFeaturesToTrackDetector_GPU
Class used for strong corners detection on an image. ::
class GoodFeaturesToTrackDetector_GPU
{
public:
explicit GoodFeaturesToTrackDetector_GPU(int maxCorners_ = 1000, double qualityLevel_ = 0.01, double minDistance_ = 0.0,
int blockSize_ = 3, bool useHarrisDetector_ = false, double harrisK_ = 0.04);
void operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat());
int maxCorners;
double qualityLevel;
double minDistance;
int blockSize;
bool useHarrisDetector;
double harrisK;
void releaseMemory();
};
The class finds the most prominent corners in the image.
.. seealso:: :ocv:func:`goodFeaturesToTrack`
gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU
---------------------------------------------------------------------
Constructor.
.. ocv:function:: gpu::GoodFeaturesToTrackDetector_GPU::GoodFeaturesToTrackDetector_GPU(int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04)
:param maxCorners: Maximum number of corners to return. If there are more corners than are found, the strongest of them is returned.
:param qualityLevel: Parameter characterizing the minimal accepted quality of image corners. The parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue (see :ocv:func:`gpu::cornerMinEigenVal` ) or the Harris function response (see :ocv:func:`gpu::cornerHarris` ). The corners with the quality measure less than the product are rejected. For example, if the best corner has the quality measure = 1500, and the ``qualityLevel=0.01`` , then all the corners with the quality measure less than 15 are rejected.
:param minDistance: Minimum possible Euclidean distance between the returned corners.
:param blockSize: Size of an average block for computing a derivative covariation matrix over each pixel neighborhood. See :ocv:func:`cornerEigenValsAndVecs` .
:param useHarrisDetector: Parameter indicating whether to use a Harris detector (see :ocv:func:`gpu::cornerHarris`) or :ocv:func:`gpu::cornerMinEigenVal`.
:param harrisK: Free parameter of the Harris detector.
gpu::GoodFeaturesToTrackDetector_GPU::operator ()
-------------------------------------------------
Finds the most prominent corners in the image.
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::operator ()(const GpuMat& image, GpuMat& corners, const GpuMat& mask = GpuMat())
:param image: Input 8-bit, single-channel image.
:param corners: Output vector of detected corners (it will be one row matrix with CV_32FC2 type).
:param mask: Optional region of interest. If the image is not empty (it needs to have the type ``CV_8UC1`` and the same size as ``image`` ), it specifies the region in which the corners are detected.
.. seealso:: :ocv:func:`goodFeaturesToTrack`
gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory
---------------------------------------------------
Releases inner buffers memory.
.. ocv:function:: void gpu::GoodFeaturesToTrackDetector_GPU::releaseMemory()
gpu::FarnebackOpticalFlow
-------------------------
.. ocv:class:: gpu::FarnebackOpticalFlow
Class computing a dense optical flow using the Gunnar Farnebacks algorithm. ::
class CV_EXPORTS FarnebackOpticalFlow
{
public:
FarnebackOpticalFlow()
{
numLevels = 5;
pyrScale = 0.5;
fastPyramids = false;
winSize = 13;
numIters = 10;
polyN = 5;
polySigma = 1.1;
flags = 0;
}
int numLevels;
double pyrScale;
bool fastPyramids;
int winSize;
int numIters;
int polyN;
double polySigma;
int flags;
void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null());
void releaseMemory();
private:
/* hidden */
};
gpu::FarnebackOpticalFlow::operator ()
--------------------------------------
Computes a dense optical flow using the Gunnar Farnebacks algorithm.
.. ocv:function:: void gpu::FarnebackOpticalFlow::operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null())
:param frame0: First 8-bit gray-scale input image
:param frame1: Second 8-bit gray-scale input image
:param flowx: Flow horizontal component
:param flowy: Flow vertical component
:param s: Stream
.. seealso:: :ocv:func:`calcOpticalFlowFarneback`
gpu::FarnebackOpticalFlow::releaseMemory
----------------------------------------
Releases unused auxiliary memory buffers.
.. ocv:function:: void gpu::FarnebackOpticalFlow::releaseMemory()
gpu::PyrLKOpticalFlow
---------------------
.. ocv:class:: gpu::PyrLKOpticalFlow
Class used for calculating an optical flow. ::
class PyrLKOpticalFlow
{
public:
PyrLKOpticalFlow();
void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts,
GpuMat& status, GpuMat* err = 0);
void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0);
Size winSize;
int maxLevel;
int iters;
bool useInitialFlow;
void releaseMemory();
};
The class can calculate an optical flow for a sparse feature set or dense optical flow using the iterative Lucas-Kanade method with pyramids.
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK`
gpu::PyrLKOpticalFlow::sparse
-----------------------------
Calculate an optical flow for a sparse feature set.
.. ocv:function:: void gpu::PyrLKOpticalFlow::sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err = 0)
:param prevImg: First 8-bit input image (supports both grayscale and color images).
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param prevPts: Vector of 2D points for which the flow needs to be found. It must be one row matrix with CV_32FC2 type.
:param nextPts: Output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image. When ``useInitialFlow`` is true, the vector must have the same size as in the input.
:param status: Output status vector (CV_8UC1 type). Each element of the vector is set to 1 if the flow for the corresponding features has been found. Otherwise, it is set to 0.
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
.. seealso:: :ocv:func:`calcOpticalFlowPyrLK`
gpu::PyrLKOpticalFlow::dense
-----------------------------
Calculate dense optical flow.
.. ocv:function:: void gpu::PyrLKOpticalFlow::dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0)
:param prevImg: First 8-bit grayscale input image.
:param nextImg: Second input image of the same size and the same type as ``prevImg`` .
:param u: Horizontal component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param v: Vertical component of the optical flow of the same size as input images, 32-bit floating-point, single-channel
:param err: Output vector (CV_32FC1 type) that contains the difference between patches around the original and moved points or min eigen value if ``getMinEigenVals`` is checked. It can be NULL, if not needed.
gpu::PyrLKOpticalFlow::releaseMemory
------------------------------------
Releases inner buffers memory.
.. ocv:function:: void gpu::PyrLKOpticalFlow::releaseMemory()
gpu::interpolateFrames
----------------------
Interpolates frames (images) using provided optical flow (displacement field).
.. ocv:function:: void gpu::interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, float pos, GpuMat& newFrame, GpuMat& buf, Stream& stream = Stream::Null())
:param frame0: First frame (32-bit floating point images, single channel).
:param frame1: Second frame. Must have the same type and size as ``frame0`` .
:param fu: Forward horizontal displacement.
:param fv: Forward vertical displacement.
:param bu: Backward horizontal displacement.
:param bv: Backward vertical displacement.
:param pos: New frame position.
:param newFrame: Output image.
:param buf: Temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, interpolated backward vertical flow.
:param stream: Stream for the asynchronous version.
gpu::FGDStatModel
-----------------
.. ocv:class:: gpu::FGDStatModel
Class used for background/foreground segmentation. ::
class FGDStatModel
{
public:
struct Params
{
...
};
explicit FGDStatModel(int out_cn = 3);
explicit FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3);
~FGDStatModel();
void create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params());
void release();
int update(const cv::gpu::GpuMat& curFrame);
//8UC3 or 8UC4 reference background image
cv::gpu::GpuMat background;
//8UC1 foreground image
cv::gpu::GpuMat foreground;
std::vector< std::vector<cv::Point> > foreground_regions;
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [FGD2003]_.
The results are available through the class fields:
.. ocv:member:: cv::gpu::GpuMat background
The output background image.
.. ocv:member:: cv::gpu::GpuMat foreground
The output foreground mask as an 8-bit binary image.
.. ocv:member:: cv::gpu::GpuMat foreground_regions
The output foreground regions calculated by :ocv:func:`findContours`.
gpu::FGDStatModel::FGDStatModel
-------------------------------
Constructors.
.. ocv:function:: gpu::FGDStatModel::FGDStatModel(int out_cn = 3)
.. ocv:function:: gpu::FGDStatModel::FGDStatModel(const cv::gpu::GpuMat& firstFrame, const Params& params = Params(), int out_cn = 3)
:param firstFrame: First frame from video stream. Supports 3- and 4-channels input ( ``CV_8UC3`` and ``CV_8UC4`` ).
:param params: Algorithm's parameters. See [FGD2003]_ for explanation.
:param out_cn: Channels count in output result and inner buffers. Can be 3 or 4. 4-channels version requires more memory, but works a bit faster.
.. seealso:: :ocv:func:`gpu::FGDStatModel::create`
gpu::FGDStatModel::create
-------------------------
Initializes background model.
.. ocv:function:: void gpu::FGDStatModel::create(const cv::gpu::GpuMat& firstFrame, const Params& params = Params())
:param firstFrame: First frame from video stream. Supports 3- and 4-channels input ( ``CV_8UC3`` and ``CV_8UC4`` ).
:param params: Algorithm's parameters. See [FGD2003]_ for explanation.
gpu::FGDStatModel::release
--------------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::FGDStatModel::release()
gpu::FGDStatModel::update
--------------------------
Updates the background model and returns foreground regions count.
.. ocv:function:: int gpu::FGDStatModel::update(const cv::gpu::GpuMat& curFrame)
:param curFrame: Next video frame.
gpu::MOG_GPU
------------
.. ocv:class:: gpu::MOG_GPU
Gaussian Mixture-based Backbround/Foreground Segmentation Algorithm. ::
class MOG_GPU
{
public:
MOG_GPU(int nmixtures = -1);
void initialize(Size frameSize, int frameType);
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
void release();
int history;
float varThreshold;
float backgroundRatio;
float noiseSigma;
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2001]_.
.. seealso:: :ocv:class:`BackgroundSubtractorMOG`
gpu::MOG_GPU::MOG_GPU
---------------------
The constructor.
.. ocv:function:: gpu::MOG_GPU::MOG_GPU(int nmixtures = -1)
:param nmixtures: Number of Gaussian mixtures.
Default constructor sets all parameters to default values.
gpu::MOG_GPU::operator()
------------------------
Updates the background model and returns the foreground mask.
.. ocv:function:: void gpu::MOG_GPU::operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null())
:param frame: Next video frame.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::MOG_GPU::getBackgroundImage
--------------------------------
Computes a background image.
.. ocv:function:: void gpu::MOG_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const
:param backgroundImage: The output background image.
:param stream: Stream for the asynchronous version.
gpu::MOG_GPU::release
---------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::MOG_GPU::release()
gpu::MOG2_GPU
-------------
.. ocv:class:: gpu::MOG2_GPU
Gaussian Mixture-based Background/Foreground Segmentation Algorithm. ::
class MOG2_GPU
{
public:
MOG2_GPU(int nmixtures = -1);
void initialize(Size frameSize, int frameType);
void operator()(const GpuMat& frame, GpuMat& fgmask, float learningRate = 0.0f, Stream& stream = Stream::Null());
void getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const;
void release();
// parameters
...
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [MOG2004]_.
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
.. ocv:member:: float backgroundRatio
Threshold defining whether the component is significant enough to be included into the background model ( corresponds to ``TB=1-cf`` from the paper??which paper??). ``cf=0.1 => TB=0.9`` is default. For ``alpha=0.001``, it means that the mode should exist for approximately 105 frames before it is considered foreground.
.. ocv:member:: float varThreshold
Threshold for the squared Mahalanobis distance that helps decide when a sample is close to the existing components (corresponds to ``Tg``). If it is not close to any component, a new component is generated. ``3 sigma => Tg=3*3=9`` is default. A smaller ``Tg`` value generates more components. A higher ``Tg`` value may result in a small number of components but they can grow too large.
.. ocv:member:: float fVarInit
Initial variance for the newly generated components. It affects the speed of adaptation. The parameter value is based on your estimate of the typical standard deviation from the images. OpenCV uses 15 as a reasonable value.
.. ocv:member:: float fVarMin
Parameter used to further control the variance.
.. ocv:member:: float fVarMax
Parameter used to further control the variance.
.. ocv:member:: float fCT
Complexity reduction parameter. This parameter defines the number of samples needed to accept to prove the component exists. ``CT=0.05`` is a default value for all the samples. By setting ``CT=0`` you get an algorithm very similar to the standard Stauffer&Grimson algorithm.
.. ocv:member:: uchar nShadowDetection
The value for marking shadow pixels in the output foreground mask. Default value is 127.
.. ocv:member:: float fTau
Shadow threshold. The shadow is detected if the pixel is a darker version of the background. ``Tau`` is a threshold defining how much darker the shadow can be. ``Tau= 0.5`` means that if a pixel is more than twice darker then it is not shadow. See [ShadowDetect2003]_.
.. ocv:member:: bool bShadowDetection
Parameter defining whether shadow detection should be enabled.
.. seealso:: :ocv:class:`BackgroundSubtractorMOG2`
gpu::MOG2_GPU::MOG2_GPU
-----------------------
The constructor.
.. ocv:function:: gpu::MOG2_GPU::MOG2_GPU(int nmixtures = -1)
:param nmixtures: Number of Gaussian mixtures.
Default constructor sets all parameters to default values.
gpu::MOG2_GPU::operator()
-------------------------
Updates the background model and returns the foreground mask.
.. ocv:function:: void gpu::MOG2_GPU::operator()( const GpuMat& frame, GpuMat& fgmask, float learningRate=-1.0f, Stream& stream=Stream::Null() )
:param frame: Next video frame.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::MOG2_GPU::getBackgroundImage
---------------------------------
Computes a background image.
.. ocv:function:: void gpu::MOG2_GPU::getBackgroundImage(GpuMat& backgroundImage, Stream& stream = Stream::Null()) const
:param backgroundImage: The output background image.
:param stream: Stream for the asynchronous version.
gpu::MOG2_GPU::release
----------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::MOG2_GPU::release()
gpu::GMG_GPU
------------
.. ocv:class:: gpu::GMG_GPU
Class used for background/foreground segmentation. ::
class GMG_GPU_GPU
{
public:
GMG_GPU();
void initialize(Size frameSize, float min = 0.0f, float max = 255.0f);
void operator ()(const GpuMat& frame, GpuMat& fgmask, float learningRate = -1.0f, Stream& stream = Stream::Null());
void release();
int maxFeatures;
float learningRate;
int numInitializationFrames;
int quantizationLevels;
float backgroundPrior;
float decisionThreshold;
int smoothingRadius;
...
};
The class discriminates between foreground and background pixels by building and maintaining a model of the background. Any pixel which does not fit this model is then deemed to be foreground. The class implements algorithm described in [GMG2012]_.
Here are important members of the class that control the algorithm, which you can set after constructing the class instance:
.. ocv:member:: int maxFeatures
Total number of distinct colors to maintain in histogram.
.. ocv:member:: float learningRate
Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
.. ocv:member:: int numInitializationFrames
Number of frames of video to use to initialize histograms.
.. ocv:member:: int quantizationLevels
Number of discrete levels in each channel to be used in histograms.
.. ocv:member:: float backgroundPrior
Prior probability that any given pixel is a background pixel. A sensitivity parameter.
.. ocv:member:: float decisionThreshold
Value above which pixel is determined to be FG.
.. ocv:member:: float smoothingRadius
Smoothing radius, in pixels, for cleaning up FG image.
gpu::GMG_GPU::GMG_GPU
---------------------
The default constructor.
.. ocv:function:: gpu::GMG_GPU::GMG_GPU()
Default constructor sets all parameters to default values.
gpu::GMG_GPU::initialize
------------------------
Initialize background model and allocates all inner buffers.
.. ocv:function:: void gpu::GMG_GPU::initialize(Size frameSize, float min = 0.0f, float max = 255.0f)
:param frameSize: Input frame size.
:param min: Minimum value taken on by pixels in image sequence. Usually 0.
:param max: Maximum value taken on by pixels in image sequence, e.g. 1.0 or 255.
gpu::GMG_GPU::operator()
------------------------
Updates the background model and returns the foreground mask
.. ocv:function:: void gpu::GMG_GPU::operator ()( const GpuMat& frame, GpuMat& fgmask, float learningRate=-1.0f, Stream& stream=Stream::Null() )
2012-10-17 03:18:30 +04:00
:param frame: Next video frame.
:param fgmask: The output foreground mask as an 8-bit binary image.
:param stream: Stream for the asynchronous version.
gpu::GMG_GPU::release
---------------------
Releases all inner buffer's memory.
.. ocv:function:: void gpu::GMG_GPU::release()
.. [Brox2004] T. Brox, A. Bruhn, N. Papenberg, J. Weickert. *High accuracy optical flow estimation based on a theory for warping*. ECCV 2004.
.. [FGD2003] Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. *Foreground Object Detection from Videos Containing Complex Background*. ACM MM2003 9p, 2003.
.. [MOG2001] P. KadewTraKuPong and R. Bowden. *An improved adaptive background mixture model for real-time tracking with shadow detection*. Proc. 2nd European Workshop on Advanced Video-Based Surveillance Systems, 2001
.. [MOG2004] Z. Zivkovic. *Improved adaptive Gausian mixture model for background subtraction*. International Conference Pattern Recognition, UK, August, 2004
.. [ShadowDetect2003] Prati, Mikic, Trivedi and Cucchiarra. *Detecting Moving Shadows...*. IEEE PAMI, 2003
.. [GMG2012] A. Godbehere, A. Matsukawa and K. Goldberg. *Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation*. American Control Conference, Montreal, June 2012