2716 lines
103 KiB
C++
2716 lines
103 KiB
C++
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||
|
//
|
||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||
|
// If you do not agree to this license, do not download, install,
|
||
|
// copy or use the software.
|
||
|
//
|
||
|
//
|
||
|
// License Agreement
|
||
|
// For Open Source Computer Vision Library
|
||
|
//
|
||
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||
|
// Third party copyrights are property of their respective owners.
|
||
|
//
|
||
|
// @Authors
|
||
|
// Niko Li, newlife20080214@gmail.com
|
||
|
// Wang Weiyan, wangweiyanster@gmail.com
|
||
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
||
|
// Wu Xinglong, wxl370@126.com
|
||
|
// Wang Yao, bitwangyaoyao@gmail.com
|
||
|
//
|
||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||
|
// are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer.
|
||
|
//
|
||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||
|
// this list of conditions and the following disclaimer in the documentation
|
||
|
// and/or other oclMaterials provided with the distribution.
|
||
|
//
|
||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||
|
// any express or implied warranties, including, but not limited to, the implied
|
||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||
|
// loss of use, data, or profits; or business interruption) however caused
|
||
|
// and on any theory of liability, whether in contract, strict liability,
|
||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||
|
// the use of this software, even if advised of the possibility of such damage.
|
||
|
//
|
||
|
//M*/
|
||
|
|
||
|
/* Haar features calculation */
|
||
|
//#define EMU
|
||
|
|
||
|
#include "precomp.hpp"
|
||
|
#include <stdio.h>
|
||
|
#ifdef EMU
|
||
|
#include "runCL.h"
|
||
|
#endif
|
||
|
using namespace cv;
|
||
|
using namespace cv::ocl;
|
||
|
using namespace std;
|
||
|
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace ocl
|
||
|
{
|
||
|
///////////////////////////OpenCL kernel strings///////////////////////////
|
||
|
extern const char *haarobjectdetect;
|
||
|
extern const char *haarobjectdetectbackup;
|
||
|
extern const char *haarobjectdetect_scaled2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* these settings affect the quality of detection: change with care */
|
||
|
#define CV_ADJUST_FEATURES 1
|
||
|
#define CV_ADJUST_WEIGHTS 0
|
||
|
|
||
|
typedef int sumtype;
|
||
|
typedef double sqsumtype;
|
||
|
|
||
|
typedef struct CvHidHaarFeature
|
||
|
{
|
||
|
struct
|
||
|
{
|
||
|
sumtype *p0, *p1, *p2, *p3;
|
||
|
float weight;
|
||
|
}
|
||
|
rect[CV_HAAR_FEATURE_MAX];
|
||
|
}
|
||
|
CvHidHaarFeature;
|
||
|
|
||
|
|
||
|
typedef struct CvHidHaarTreeNode
|
||
|
{
|
||
|
CvHidHaarFeature feature;
|
||
|
float threshold;
|
||
|
int left;
|
||
|
int right;
|
||
|
}
|
||
|
CvHidHaarTreeNode;
|
||
|
|
||
|
|
||
|
typedef struct CvHidHaarClassifier
|
||
|
{
|
||
|
int count;
|
||
|
//CvHaarFeature* orig_feature;
|
||
|
CvHidHaarTreeNode *node;
|
||
|
float *alpha;
|
||
|
}
|
||
|
CvHidHaarClassifier;
|
||
|
|
||
|
|
||
|
typedef struct CvHidHaarStageClassifier
|
||
|
{
|
||
|
int count;
|
||
|
float threshold;
|
||
|
CvHidHaarClassifier *classifier;
|
||
|
int two_rects;
|
||
|
|
||
|
struct CvHidHaarStageClassifier *next;
|
||
|
struct CvHidHaarStageClassifier *child;
|
||
|
struct CvHidHaarStageClassifier *parent;
|
||
|
}
|
||
|
CvHidHaarStageClassifier;
|
||
|
|
||
|
|
||
|
struct CvHidHaarClassifierCascade
|
||
|
{
|
||
|
int count;
|
||
|
int is_stump_based;
|
||
|
int has_tilted_features;
|
||
|
int is_tree;
|
||
|
double inv_window_area;
|
||
|
CvMat sum, sqsum, tilted;
|
||
|
CvHidHaarStageClassifier *stage_classifier;
|
||
|
sqsumtype *pq0, *pq1, *pq2, *pq3;
|
||
|
sumtype *p0, *p1, *p2, *p3;
|
||
|
|
||
|
void **ipp_stages;
|
||
|
};
|
||
|
typedef struct
|
||
|
{
|
||
|
//int rows;
|
||
|
//int ystep;
|
||
|
int width_height;
|
||
|
//int height;
|
||
|
int grpnumperline_totalgrp;
|
||
|
//int totalgrp;
|
||
|
int imgoff;
|
||
|
float factor;
|
||
|
} detect_piramid_info;
|
||
|
#if WIN32
|
||
|
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT))
|
||
|
typedef _ALIGNED_ON(128) struct GpuHidHaarFeature
|
||
|
{
|
||
|
_ALIGNED_ON(32) struct
|
||
|
{
|
||
|
_ALIGNED_ON(4) int p0 ;
|
||
|
_ALIGNED_ON(4) int p1 ;
|
||
|
_ALIGNED_ON(4) int p2 ;
|
||
|
_ALIGNED_ON(4) int p3 ;
|
||
|
_ALIGNED_ON(4) float weight ;
|
||
|
}
|
||
|
_ALIGNED_ON(32) rect[CV_HAAR_FEATURE_MAX] ;
|
||
|
}
|
||
|
GpuHidHaarFeature;
|
||
|
|
||
|
|
||
|
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode
|
||
|
{
|
||
|
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4];
|
||
|
//_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ;
|
||
|
//_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ;
|
||
|
//_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ;
|
||
|
/*_ALIGNED_ON(16)*/
|
||
|
float weight[CV_HAAR_FEATURE_MAX] ;
|
||
|
/*_ALIGNED_ON(4)*/
|
||
|
float threshold ;
|
||
|
_ALIGNED_ON(8) float alpha[2] ;
|
||
|
_ALIGNED_ON(4) int left ;
|
||
|
_ALIGNED_ON(4) int right ;
|
||
|
// GpuHidHaarFeature feature __attribute__((aligned (128)));
|
||
|
}
|
||
|
GpuHidHaarTreeNode;
|
||
|
|
||
|
|
||
|
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier
|
||
|
{
|
||
|
_ALIGNED_ON(4) int count;
|
||
|
//CvHaarFeature* orig_feature;
|
||
|
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ;
|
||
|
_ALIGNED_ON(8) float *alpha ;
|
||
|
}
|
||
|
GpuHidHaarClassifier;
|
||
|
|
||
|
|
||
|
typedef _ALIGNED_ON(64) struct GpuHidHaarStageClassifier
|
||
|
{
|
||
|
_ALIGNED_ON(4) int count ;
|
||
|
_ALIGNED_ON(4) float threshold ;
|
||
|
_ALIGNED_ON(4) int two_rects ;
|
||
|
_ALIGNED_ON(8) GpuHidHaarClassifier *classifier ;
|
||
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *next;
|
||
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *child ;
|
||
|
_ALIGNED_ON(8) struct GpuHidHaarStageClassifier *parent ;
|
||
|
}
|
||
|
GpuHidHaarStageClassifier;
|
||
|
|
||
|
|
||
|
typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade
|
||
|
{
|
||
|
_ALIGNED_ON(4) int count ;
|
||
|
_ALIGNED_ON(4) int is_stump_based ;
|
||
|
_ALIGNED_ON(4) int has_tilted_features ;
|
||
|
_ALIGNED_ON(4) int is_tree ;
|
||
|
_ALIGNED_ON(4) int pq0 ;
|
||
|
_ALIGNED_ON(4) int pq1 ;
|
||
|
_ALIGNED_ON(4) int pq2 ;
|
||
|
_ALIGNED_ON(4) int pq3 ;
|
||
|
_ALIGNED_ON(4) int p0 ;
|
||
|
_ALIGNED_ON(4) int p1 ;
|
||
|
_ALIGNED_ON(4) int p2 ;
|
||
|
_ALIGNED_ON(4) int p3 ;
|
||
|
_ALIGNED_ON(4) float inv_window_area ;
|
||
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
||
|
} GpuHidHaarClassifierCascade;
|
||
|
#else
|
||
|
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) ))
|
||
|
|
||
|
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature
|
||
|
{
|
||
|
struct _ALIGNED_ON(32)
|
||
|
{
|
||
|
int p0 _ALIGNED_ON(4);
|
||
|
int p1 _ALIGNED_ON(4);
|
||
|
int p2 _ALIGNED_ON(4);
|
||
|
int p3 _ALIGNED_ON(4);
|
||
|
float weight _ALIGNED_ON(4);
|
||
|
}
|
||
|
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32);
|
||
|
}
|
||
|
GpuHidHaarFeature;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
|
||
|
{
|
||
|
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64);
|
||
|
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
|
||
|
float threshold;// _ALIGNED_ON(4);
|
||
|
float alpha[2] _ALIGNED_ON(8);
|
||
|
int left _ALIGNED_ON(4);
|
||
|
int right _ALIGNED_ON(4);
|
||
|
}
|
||
|
GpuHidHaarTreeNode;
|
||
|
|
||
|
typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
GpuHidHaarTreeNode *node _ALIGNED_ON(8);
|
||
|
float *alpha _ALIGNED_ON(8);
|
||
|
}
|
||
|
GpuHidHaarClassifier;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(64) GpuHidHaarStageClassifier
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
float threshold _ALIGNED_ON(4);
|
||
|
int two_rects _ALIGNED_ON(4);
|
||
|
GpuHidHaarClassifier *classifier _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier *next _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier *child _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier *parent _ALIGNED_ON(8);
|
||
|
}
|
||
|
GpuHidHaarStageClassifier;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
int is_stump_based _ALIGNED_ON(4);
|
||
|
int has_tilted_features _ALIGNED_ON(4);
|
||
|
int is_tree _ALIGNED_ON(4);
|
||
|
int pq0 _ALIGNED_ON(4);
|
||
|
int pq1 _ALIGNED_ON(4);
|
||
|
int pq2 _ALIGNED_ON(4);
|
||
|
int pq3 _ALIGNED_ON(4);
|
||
|
int p0 _ALIGNED_ON(4);
|
||
|
int p1 _ALIGNED_ON(4);
|
||
|
int p2 _ALIGNED_ON(4);
|
||
|
int p3 _ALIGNED_ON(4);
|
||
|
float inv_window_area _ALIGNED_ON(4);
|
||
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
||
|
} GpuHidHaarClassifierCascade;
|
||
|
#endif
|
||
|
|
||
|
const int icv_object_win_border = 1;
|
||
|
const float icv_stage_threshold_bias = 0.0001f;
|
||
|
double globaltime = 0;
|
||
|
|
||
|
|
||
|
CvHaarClassifierCascade*
|
||
|
gpuCreateHaarClassifierCascade( int stage_count )
|
||
|
{
|
||
|
CvHaarClassifierCascade *cascade = 0;
|
||
|
|
||
|
int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier);
|
||
|
|
||
|
if( stage_count <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );
|
||
|
|
||
|
cascade = (CvHaarClassifierCascade *)cvAlloc( block_size );
|
||
|
memset( cascade, 0, block_size );
|
||
|
|
||
|
cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1);
|
||
|
cascade->flags = CV_HAAR_MAGIC_VAL;
|
||
|
cascade->count = stage_count;
|
||
|
|
||
|
return cascade;
|
||
|
}
|
||
|
|
||
|
//static int globalcounter = 0;
|
||
|
|
||
|
void
|
||
|
gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade )
|
||
|
{
|
||
|
if( _cascade && *_cascade )
|
||
|
{
|
||
|
cvFree( _cascade );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* create more efficient internal representation of haar classifier cascade */
|
||
|
GpuHidHaarClassifierCascade*
|
||
|
gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier)
|
||
|
{
|
||
|
GpuHidHaarClassifierCascade *out = 0;
|
||
|
|
||
|
int i, j, k, l;
|
||
|
int datasize;
|
||
|
int total_classifiers = 0;
|
||
|
int total_nodes = 0;
|
||
|
char errorstr[100];
|
||
|
|
||
|
GpuHidHaarStageClassifier *stage_classifier_ptr;
|
||
|
GpuHidHaarClassifier *haar_classifier_ptr;
|
||
|
GpuHidHaarTreeNode *haar_node_ptr;
|
||
|
|
||
|
CvSize orig_window_size;
|
||
|
int has_tilted_features = 0;
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
|
||
|
|
||
|
if( cascade->hid_cascade )
|
||
|
CV_Error( CV_StsError, "hid_cascade has been already created" );
|
||
|
|
||
|
if( !cascade->stage_classifier )
|
||
|
CV_Error( CV_StsNullPtr, "" );
|
||
|
|
||
|
if( cascade->count <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "Negative number of cascade stages" );
|
||
|
|
||
|
orig_window_size = cascade->orig_window_size;
|
||
|
|
||
|
/* check input structure correctness and calculate total memory size needed for
|
||
|
internal representation of the classifier cascade */
|
||
|
for( i = 0; i < cascade->count; i++ )
|
||
|
{
|
||
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
|
||
|
|
||
|
if( !stage_classifier->classifier ||
|
||
|
stage_classifier->count <= 0 )
|
||
|
{
|
||
|
sprintf( errorstr, "header of the stage classifier #%d is invalid "
|
||
|
"(has null pointers or non-positive classfier count)", i );
|
||
|
CV_Error( CV_StsError, errorstr );
|
||
|
}
|
||
|
|
||
|
total_classifiers += stage_classifier->count;
|
||
|
|
||
|
for( j = 0; j < stage_classifier->count; j++ )
|
||
|
{
|
||
|
CvHaarClassifier *classifier = stage_classifier->classifier + j;
|
||
|
|
||
|
total_nodes += classifier->count;
|
||
|
for( l = 0; l < classifier->count; l++ )
|
||
|
{
|
||
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
|
||
|
{
|
||
|
if( classifier->haar_feature[l].rect[k].r.width )
|
||
|
{
|
||
|
CvRect r = classifier->haar_feature[l].rect[k].r;
|
||
|
int tilted = classifier->haar_feature[l].tilted;
|
||
|
has_tilted_features |= tilted != 0;
|
||
|
if( r.width < 0 || r.height < 0 || r.y < 0 ||
|
||
|
r.x + r.width > orig_window_size.width
|
||
|
||
|
||
|
(!tilted &&
|
||
|
(r.x < 0 || r.y + r.height > orig_window_size.height))
|
||
|
||
|
||
|
(tilted && (r.x - r.height < 0 ||
|
||
|
r.y + r.width + r.height > orig_window_size.height)))
|
||
|
{
|
||
|
sprintf( errorstr, "rectangle #%d of the classifier #%d of "
|
||
|
"the stage classifier #%d is not inside "
|
||
|
"the reference (original) cascade window", k, j, i );
|
||
|
CV_Error( CV_StsNullPtr, errorstr );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// this is an upper boundary for the whole hidden cascade size
|
||
|
datasize = sizeof(GpuHidHaarClassifierCascade) +
|
||
|
sizeof(GpuHidHaarStageClassifier) * cascade->count +
|
||
|
sizeof(GpuHidHaarClassifier) * total_classifiers +
|
||
|
sizeof(GpuHidHaarTreeNode) * total_nodes;
|
||
|
|
||
|
*totalclassifier = total_classifiers;
|
||
|
*size = datasize;
|
||
|
out = (GpuHidHaarClassifierCascade *)cvAlloc( datasize );
|
||
|
memset( out, 0, sizeof(*out) );
|
||
|
|
||
|
/* init header */
|
||
|
out->count = cascade->count;
|
||
|
stage_classifier_ptr = (GpuHidHaarStageClassifier *)(out + 1);
|
||
|
haar_classifier_ptr = (GpuHidHaarClassifier *)(stage_classifier_ptr + cascade->count);
|
||
|
haar_node_ptr = (GpuHidHaarTreeNode *)(haar_classifier_ptr + total_classifiers);
|
||
|
|
||
|
out->is_stump_based = 1;
|
||
|
out->has_tilted_features = has_tilted_features;
|
||
|
out->is_tree = 0;
|
||
|
|
||
|
/* initialize internal representation */
|
||
|
for( i = 0; i < cascade->count; i++ )
|
||
|
{
|
||
|
CvHaarStageClassifier *stage_classifier = cascade->stage_classifier + i;
|
||
|
GpuHidHaarStageClassifier *hid_stage_classifier = stage_classifier_ptr + i;
|
||
|
|
||
|
hid_stage_classifier->count = stage_classifier->count;
|
||
|
hid_stage_classifier->threshold = stage_classifier->threshold - icv_stage_threshold_bias;
|
||
|
hid_stage_classifier->classifier = haar_classifier_ptr;
|
||
|
hid_stage_classifier->two_rects = 1;
|
||
|
haar_classifier_ptr += stage_classifier->count;
|
||
|
|
||
|
/*
|
||
|
hid_stage_classifier->parent = (stage_classifier->parent == -1)
|
||
|
? NULL : stage_classifier_ptr + stage_classifier->parent;
|
||
|
hid_stage_classifier->next = (stage_classifier->next == -1)
|
||
|
? NULL : stage_classifier_ptr + stage_classifier->next;
|
||
|
hid_stage_classifier->child = (stage_classifier->child == -1)
|
||
|
? NULL : stage_classifier_ptr + stage_classifier->child;
|
||
|
|
||
|
out->is_tree |= hid_stage_classifier->next != NULL;
|
||
|
*/
|
||
|
|
||
|
for( j = 0; j < stage_classifier->count; j++ )
|
||
|
{
|
||
|
CvHaarClassifier *classifier = stage_classifier->classifier + j;
|
||
|
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j;
|
||
|
int node_count = classifier->count;
|
||
|
|
||
|
// float* alpha_ptr = (float*)(haar_node_ptr + node_count);
|
||
|
float *alpha_ptr = &haar_node_ptr->alpha[0];
|
||
|
|
||
|
hid_classifier->count = node_count;
|
||
|
hid_classifier->node = haar_node_ptr;
|
||
|
hid_classifier->alpha = alpha_ptr;
|
||
|
|
||
|
for( l = 0; l < node_count; l++ )
|
||
|
{
|
||
|
GpuHidHaarTreeNode *node = hid_classifier->node + l;
|
||
|
CvHaarFeature *feature = classifier->haar_feature + l;
|
||
|
|
||
|
memset( node, -1, sizeof(*node) );
|
||
|
node->threshold = classifier->threshold[l];
|
||
|
node->left = classifier->left[l];
|
||
|
node->right = classifier->right[l];
|
||
|
|
||
|
if( fabs(feature->rect[2].weight) < DBL_EPSILON ||
|
||
|
feature->rect[2].r.width == 0 ||
|
||
|
feature->rect[2].r.height == 0 )
|
||
|
{
|
||
|
node->p[2][0] = 0;
|
||
|
node->p[2][1] = 0;
|
||
|
node->p[2][2] = 0;
|
||
|
node->p[2][3] = 0;
|
||
|
node->weight[2] = 0;
|
||
|
}
|
||
|
// memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
|
||
|
else
|
||
|
hid_stage_classifier->two_rects = 0;
|
||
|
}
|
||
|
|
||
|
memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
|
||
|
haar_node_ptr = haar_node_ptr + 1;
|
||
|
// (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
|
||
|
// (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1);
|
||
|
|
||
|
out->is_stump_based &= node_count == 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
cascade->hid_cascade = (CvHidHaarClassifierCascade *)out;
|
||
|
assert( (char *)haar_node_ptr - (char *)out <= datasize );
|
||
|
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
|
||
|
#define sum_elem_ptr(sum,row,col) \
|
||
|
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
|
||
|
|
||
|
#define sqsum_elem_ptr(sqsum,row,col) \
|
||
|
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
|
||
|
|
||
|
#define calc_sum(rect,offset) \
|
||
|
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
|
||
|
|
||
|
|
||
|
CV_IMPL void
|
||
|
gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade,
|
||
|
/* const CvArr* _sum,
|
||
|
const CvArr* _sqsum,
|
||
|
const CvArr* _tilted_sum,*/
|
||
|
double scale,
|
||
|
int step)
|
||
|
{
|
||
|
// CvMat sum_stub, *sum = (CvMat*)_sum;
|
||
|
// CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
|
||
|
// CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
|
||
|
GpuHidHaarClassifierCascade *cascade;
|
||
|
int coi0 = 0, coi1 = 0;
|
||
|
int i;
|
||
|
int datasize;
|
||
|
int total;
|
||
|
CvRect equRect;
|
||
|
double weight_scale;
|
||
|
GpuHidHaarStageClassifier *stage_classifier;
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
|
||
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
|
||
|
|
||
|
if( scale <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" );
|
||
|
|
||
|
// sum = cvGetMat( sum, &sum_stub, &coi0 );
|
||
|
// sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
|
||
|
|
||
|
if( coi0 || coi1 )
|
||
|
CV_Error( CV_BadCOI, "COI is not supported" );
|
||
|
|
||
|
// if( !CV_ARE_SIZES_EQ( sum, sqsum ))
|
||
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||
|
|
||
|
// if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
|
||
|
// CV_MAT_TYPE(sum->type) != CV_32SC1 )
|
||
|
// CV_Error( CV_StsUnsupportedFormat,
|
||
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||
|
|
||
|
if( !_cascade->hid_cascade )
|
||
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
|
||
|
|
||
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
|
||
|
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1);
|
||
|
|
||
|
if( cascade->has_tilted_features )
|
||
|
{
|
||
|
// tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
|
||
|
|
||
|
// if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
|
||
|
// CV_Error( CV_StsUnsupportedFormat,
|
||
|
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||
|
|
||
|
// if( sum->step != tilted->step )
|
||
|
// CV_Error( CV_StsUnmatchedSizes,
|
||
|
// "Sum and tilted_sum must have the same stride (step, widthStep)" );
|
||
|
|
||
|
// if( !CV_ARE_SIZES_EQ( sum, tilted ))
|
||
|
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||
|
// cascade->tilted = *tilted;
|
||
|
}
|
||
|
|
||
|
_cascade->scale = scale;
|
||
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
|
||
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
|
||
|
|
||
|
//cascade->sum = *sum;
|
||
|
//cascade->sqsum = *sqsum;
|
||
|
|
||
|
equRect.x = equRect.y = cvRound(scale);
|
||
|
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale);
|
||
|
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale);
|
||
|
weight_scale = 1. / (equRect.width * equRect.height);
|
||
|
cascade->inv_window_area = weight_scale;
|
||
|
|
||
|
// cascade->pq0 = equRect.y * step + equRect.x;
|
||
|
// cascade->pq1 = equRect.y * step + equRect.x + equRect.width ;
|
||
|
// cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x;
|
||
|
// cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ;
|
||
|
|
||
|
cascade->pq0 = equRect.x;
|
||
|
cascade->pq1 = equRect.y;
|
||
|
cascade->pq2 = equRect.x + equRect.width;
|
||
|
cascade->pq3 = equRect.y + equRect.height;
|
||
|
|
||
|
cascade->p0 = equRect.x;
|
||
|
cascade->p1 = equRect.y;
|
||
|
cascade->p2 = equRect.x + equRect.width;
|
||
|
cascade->p3 = equRect.y + equRect.height;
|
||
|
|
||
|
|
||
|
/* init pointers in haar features according to real window size and
|
||
|
given image pointers */
|
||
|
for( i = 0; i < _cascade->count; i++ )
|
||
|
{
|
||
|
int j, k, l;
|
||
|
for( j = 0; j < stage_classifier[i].count; j++ )
|
||
|
{
|
||
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
|
||
|
{
|
||
|
CvHaarFeature *feature =
|
||
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l];
|
||
|
/* GpuHidHaarClassifier* classifier =
|
||
|
cascade->stage_classifier[i].classifier + j; */
|
||
|
//GpuHidHaarFeature* hidfeature =
|
||
|
// &cascade->stage_classifier[i].classifier[j].node[l].feature;
|
||
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
|
||
|
double sum0 = 0, area0 = 0;
|
||
|
CvRect r[3];
|
||
|
|
||
|
int base_w = -1, base_h = -1;
|
||
|
int new_base_w = 0, new_base_h = 0;
|
||
|
int kx, ky;
|
||
|
int flagx = 0, flagy = 0;
|
||
|
int x0 = 0, y0 = 0;
|
||
|
int nr;
|
||
|
|
||
|
/* align blocks */
|
||
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
|
||
|
{
|
||
|
//if( !hidfeature->rect[k].p0 )
|
||
|
// break;
|
||
|
if(!hidnode->p[k][0])
|
||
|
break;
|
||
|
r[k] = feature->rect[k].r;
|
||
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width - 1) );
|
||
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x - 1) );
|
||
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height - 1) );
|
||
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y - 1) );
|
||
|
}
|
||
|
|
||
|
nr = k;
|
||
|
base_w += 1;
|
||
|
base_h += 1;
|
||
|
if(base_w == 0)
|
||
|
base_w = 1;
|
||
|
kx = r[0].width / base_w;
|
||
|
if(base_h == 0)
|
||
|
base_h = 1;
|
||
|
ky = r[0].height / base_h;
|
||
|
|
||
|
if( kx <= 0 )
|
||
|
{
|
||
|
flagx = 1;
|
||
|
new_base_w = cvRound( r[0].width * scale ) / kx;
|
||
|
x0 = cvRound( r[0].x * scale );
|
||
|
}
|
||
|
|
||
|
if( ky <= 0 )
|
||
|
{
|
||
|
flagy = 1;
|
||
|
new_base_h = cvRound( r[0].height * scale ) / ky;
|
||
|
y0 = cvRound( r[0].y * scale );
|
||
|
}
|
||
|
|
||
|
for( k = 0; k < nr; k++ )
|
||
|
{
|
||
|
CvRect tr;
|
||
|
double correction_ratio;
|
||
|
|
||
|
if( flagx )
|
||
|
{
|
||
|
tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
|
||
|
tr.width = r[k].width * new_base_w / base_w;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.x = cvRound( r[k].x * scale );
|
||
|
tr.width = cvRound( r[k].width * scale );
|
||
|
}
|
||
|
|
||
|
if( flagy )
|
||
|
{
|
||
|
tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
|
||
|
tr.height = r[k].height * new_base_h / base_h;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.y = cvRound( r[k].y * scale );
|
||
|
tr.height = cvRound( r[k].height * scale );
|
||
|
}
|
||
|
|
||
|
#if CV_ADJUST_WEIGHTS
|
||
|
{
|
||
|
// RAINER START
|
||
|
const float orig_feature_size = (float)(feature->rect[k].r.width) * feature->rect[k].r.height;
|
||
|
const float orig_norm_size = (float)(_cascade->orig_window_size.width) * (_cascade->orig_window_size.height);
|
||
|
const float feature_size = float(tr.width * tr.height);
|
||
|
//const float normSize = float(equRect.width*equRect.height);
|
||
|
float target_ratio = orig_feature_size / orig_norm_size;
|
||
|
//float isRatio = featureSize / normSize;
|
||
|
//correctionRatio = targetRatio / isRatio / normSize;
|
||
|
correction_ratio = target_ratio / feature_size;
|
||
|
// RAINER END
|
||
|
}
|
||
|
#else
|
||
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
|
||
|
#endif
|
||
|
|
||
|
if( !feature->tilted )
|
||
|
{
|
||
|
/* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x;
|
||
|
hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width;
|
||
|
hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x;
|
||
|
hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width;
|
||
|
*/
|
||
|
/*hidnode->p0[k] = tr.y * step + tr.x;
|
||
|
hidnode->p1[k] = tr.y * step + tr.x + tr.width;
|
||
|
hidnode->p2[k] = (tr.y + tr.height) * step + tr.x;
|
||
|
hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/
|
||
|
hidnode->p[k][0] = tr.x;
|
||
|
hidnode->p[k][1] = tr.y;
|
||
|
hidnode->p[k][2] = tr.x + tr.width;
|
||
|
hidnode->p[k][3] = tr.y + tr.height;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width;
|
||
|
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height;
|
||
|
hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x;
|
||
|
hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height;
|
||
|
*/
|
||
|
|
||
|
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width;
|
||
|
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height;
|
||
|
hidnode->p[k][0] = tr.y * step + tr.x;
|
||
|
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height;
|
||
|
}
|
||
|
|
||
|
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
|
||
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
|
||
|
if( k == 0 )
|
||
|
area0 = tr.width * tr.height;
|
||
|
else
|
||
|
//sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
|
||
|
sum0 += hidnode->weight[k] * tr.width * tr.height;
|
||
|
}
|
||
|
|
||
|
// hidfeature->rect[0].weight = (float)(-sum0/area0);
|
||
|
hidnode->weight[0] = (float)(-sum0 / area0);
|
||
|
} /* l */
|
||
|
} /* j */
|
||
|
}
|
||
|
}
|
||
|
CV_IMPL void
|
||
|
gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
|
||
|
/*double scale=0.0,*/
|
||
|
/*int step*/)
|
||
|
{
|
||
|
GpuHidHaarClassifierCascade *cascade;
|
||
|
int i;
|
||
|
int datasize;
|
||
|
int total;
|
||
|
CvRect equRect;
|
||
|
double weight_scale;
|
||
|
GpuHidHaarStageClassifier *stage_classifier;
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
|
||
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
|
||
|
|
||
|
if( !_cascade->hid_cascade )
|
||
|
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
|
||
|
|
||
|
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
|
||
|
stage_classifier = (GpuHidHaarStageClassifier *) cascade + 1;
|
||
|
|
||
|
_cascade->scale = 1.0;
|
||
|
_cascade->real_window_size.width = _cascade->orig_window_size.width ;
|
||
|
_cascade->real_window_size.height = _cascade->orig_window_size.height;
|
||
|
|
||
|
equRect.x = equRect.y = 1;
|
||
|
equRect.width = _cascade->orig_window_size.width - 2;
|
||
|
equRect.height = _cascade->orig_window_size.height - 2;
|
||
|
weight_scale = 1;
|
||
|
cascade->inv_window_area = weight_scale;
|
||
|
|
||
|
cascade->p0 = equRect.x;
|
||
|
cascade->p1 = equRect.y;
|
||
|
cascade->p2 = equRect.height;
|
||
|
cascade->p3 = equRect.width ;
|
||
|
for( i = 0; i < _cascade->count; i++ )
|
||
|
{
|
||
|
int j, k, l;
|
||
|
for( j = 0; j < stage_classifier[i].count; j++ )
|
||
|
{
|
||
|
for( l = 0; l < stage_classifier[i].classifier[j].count; l++ )
|
||
|
{
|
||
|
CvHaarFeature *feature =
|
||
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l];
|
||
|
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
|
||
|
double sum0 = 0, area0 = 0;
|
||
|
CvRect r[3];
|
||
|
|
||
|
int base_w = -1, base_h = -1;
|
||
|
int new_base_w = 0, new_base_h = 0;
|
||
|
int kx, ky;
|
||
|
int flagx = 0, flagy = 0;
|
||
|
int x0 = 0, y0 = 0;
|
||
|
int nr;
|
||
|
|
||
|
/* align blocks */
|
||
|
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
|
||
|
{
|
||
|
if(!hidnode->p[k][0])
|
||
|
break;
|
||
|
r[k] = feature->rect[k].r;
|
||
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
|
||
|
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
|
||
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
|
||
|
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
|
||
|
}
|
||
|
|
||
|
nr = k;
|
||
|
for( k = 0; k < nr; k++ )
|
||
|
{
|
||
|
CvRect tr;
|
||
|
double correction_ratio;
|
||
|
tr.x = r[k].x;
|
||
|
tr.width = r[k].width;
|
||
|
tr.y = r[k].y ;
|
||
|
tr.height = r[k].height;
|
||
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
|
||
|
hidnode->p[k][0] = tr.x;
|
||
|
hidnode->p[k][1] = tr.y;
|
||
|
hidnode->p[k][2] = tr.width;
|
||
|
hidnode->p[k][3] = tr.height;
|
||
|
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
|
||
|
}
|
||
|
//hidnode->weight[0]=(float)(-sum0/area0);
|
||
|
} /* l */
|
||
|
} /* j */
|
||
|
}
|
||
|
}
|
||
|
CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemStorage *storage, double scaleFactor,
|
||
|
int minNeighbors, int flags, CvSize minSize, CvSize maxSize)
|
||
|
{
|
||
|
CvHaarClassifierCascade *cascade = oldCascade;
|
||
|
|
||
|
//double alltime = (double)cvGetTickCount();
|
||
|
//double t = (double)cvGetTickCount();
|
||
|
const double GROUP_EPS = 0.2;
|
||
|
oclMat gtemp, gsum1, gtilted1, gsqsum1, gnormImg, gsumcanny;
|
||
|
CvSeq *result_seq = 0;
|
||
|
cv::Ptr<CvMemStorage> temp_storage;
|
||
|
|
||
|
cv::ConcurrentRectVector allCandidates;
|
||
|
std::vector<cv::Rect> rectList;
|
||
|
std::vector<int> rweights;
|
||
|
double factor;
|
||
|
int coi;
|
||
|
int datasize;
|
||
|
int totalclassifier;
|
||
|
|
||
|
void *out;
|
||
|
GpuHidHaarClassifierCascade *gcascade;
|
||
|
GpuHidHaarStageClassifier *stage;
|
||
|
GpuHidHaarClassifier *classifier;
|
||
|
GpuHidHaarTreeNode *node;
|
||
|
|
||
|
int *candidate;
|
||
|
cl_int status;
|
||
|
|
||
|
bool doCannyPruning = (flags & CV_HAAR_DO_CANNY_PRUNING) != 0;
|
||
|
bool findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
|
||
|
bool roughSearch = (flags & CV_HAAR_DO_ROUGH_SEARCH) != 0;
|
||
|
|
||
|
//double t = 0;
|
||
|
if( maxSize.height == 0 || maxSize.width == 0 )
|
||
|
{
|
||
|
maxSize.height = gimg.rows;
|
||
|
maxSize.width = gimg.cols;
|
||
|
}
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||
|
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
|
||
|
|
||
|
if( !storage )
|
||
|
CV_Error( CV_StsNullPtr, "Null storage pointer" );
|
||
|
|
||
|
if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
|
||
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
|
||
|
|
||
|
if( scaleFactor <= 1 )
|
||
|
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
|
||
|
|
||
|
if( findBiggestObject )
|
||
|
flags &= ~CV_HAAR_SCALE_IMAGE;
|
||
|
|
||
|
//gtemp = oclMat( gimg.rows, gimg.cols, CV_8UC1);
|
||
|
//gsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 );
|
||
|
//gsqsum1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32FC1 );
|
||
|
|
||
|
if( !cascade->hid_cascade )
|
||
|
out = (void *)gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
|
||
|
if( cascade->hid_cascade->has_tilted_features )
|
||
|
gtilted1 = oclMat( gimg.rows + 1, gimg.cols + 1, CV_32SC1 );
|
||
|
|
||
|
result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), storage );
|
||
|
|
||
|
if( CV_MAT_CN(gimg.type()) > 1 )
|
||
|
{
|
||
|
cvtColor( gimg, gtemp, CV_BGR2GRAY );
|
||
|
gimg = gtemp;
|
||
|
}
|
||
|
|
||
|
if( findBiggestObject )
|
||
|
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
//printf( "before if time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
|
||
|
if( gimg.cols < minSize.width || gimg.rows < minSize.height )
|
||
|
CV_Error(CV_StsError, "Image too small");
|
||
|
|
||
|
if( flags & CV_HAAR_SCALE_IMAGE )
|
||
|
{
|
||
|
CvSize winSize0 = cascade->orig_window_size;
|
||
|
//float scalefactor = 1.1f;
|
||
|
//float factor = 1.f;
|
||
|
int totalheight = 0;
|
||
|
int indexy = 0;
|
||
|
CvSize sz;
|
||
|
//t = (double)cvGetTickCount();
|
||
|
vector<CvSize> sizev;
|
||
|
vector<float> scalev;
|
||
|
for(factor = 1.f;; factor *= scaleFactor)
|
||
|
{
|
||
|
CvSize winSize = { cvRound(winSize0.width *factor), cvRound(winSize0.height *factor) };
|
||
|
sz.width = cvRound( gimg.cols / factor ) + 1;
|
||
|
sz.height = cvRound( gimg.rows / factor ) + 1;
|
||
|
CvSize sz1 = { sz.width - winSize0.width - 1, sz.height - winSize0.height - 1 };
|
||
|
|
||
|
if( sz1.width <= 0 || sz1.height <= 0 )
|
||
|
break;
|
||
|
if( winSize.width > maxSize.width || winSize.height > maxSize.height )
|
||
|
break;
|
||
|
if( winSize.width < minSize.width || winSize.height < minSize.height )
|
||
|
continue;
|
||
|
|
||
|
totalheight += sz.height;
|
||
|
sizev.push_back(sz);
|
||
|
scalev.push_back(factor);
|
||
|
}
|
||
|
//int flag = 0;
|
||
|
|
||
|
oclMat gimg1(gimg.rows, gimg.cols, CV_8UC1);
|
||
|
oclMat gsum(totalheight, gimg.cols + 1, CV_32SC1);
|
||
|
oclMat gsqsum(totalheight, gimg.cols + 1, CV_32FC1);
|
||
|
|
||
|
//cl_mem cascadebuffer;
|
||
|
cl_mem stagebuffer;
|
||
|
//cl_mem classifierbuffer;
|
||
|
cl_mem nodebuffer;
|
||
|
cl_mem candidatebuffer;
|
||
|
cl_mem scaleinfobuffer;
|
||
|
cl_kernel kernel;
|
||
|
kernel = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade");
|
||
|
cv::Rect roi, roi2;
|
||
|
cv::Mat imgroi, imgroisq;
|
||
|
cv::ocl::oclMat resizeroi, gimgroi, gimgroisq;
|
||
|
int grp_per_CU = 12;
|
||
|
|
||
|
size_t blocksize = 8;
|
||
|
size_t localThreads[3] = { blocksize, blocksize , 1 };
|
||
|
size_t globalThreads[3] = { grp_per_CU * ((gsum.clCxt)->impl->maxComputeUnits) *localThreads[0],
|
||
|
localThreads[1], 1
|
||
|
};
|
||
|
int outputsz = 256 * globalThreads[0] / localThreads[0];
|
||
|
int loopcount = sizev.size();
|
||
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
|
||
|
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
// printf( "pre time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
//int *it =scaleinfo;
|
||
|
// t = (double)cvGetTickCount();
|
||
|
|
||
|
for( int i = 0; i < loopcount; i++ )
|
||
|
{
|
||
|
sz = sizev[i];
|
||
|
factor = scalev[i];
|
||
|
roi = Rect(0, indexy, sz.width, sz.height);
|
||
|
roi2 = Rect(0, 0, sz.width - 1, sz.height - 1);
|
||
|
resizeroi = gimg1(roi2);
|
||
|
gimgroi = gsum(roi);
|
||
|
gimgroisq = gsqsum(roi);
|
||
|
//scaleinfo[i].rows = gimgroi.rows;
|
||
|
int ystep = 1; // factor > 2 ? 1 : 2;
|
||
|
int width = gimgroi.cols - 1 - cascade->orig_window_size.width;
|
||
|
int height = gimgroi.rows - 1 - cascade->orig_window_size.height;
|
||
|
scaleinfo[i].width_height = (width << 16) | height;
|
||
|
|
||
|
|
||
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
|
||
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
|
||
|
//outputsz +=width*height;
|
||
|
|
||
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
|
||
|
scaleinfo[i].imgoff = gimgroi.offset >> 2;
|
||
|
scaleinfo[i].factor = factor;
|
||
|
//printf("rows = %d,ystep = %d,width = %d,height = %d,grpnumperline = %d,totalgrp = %d,imgoff = %d,factor = %f\n",
|
||
|
// scaleinfo[i].rows,scaleinfo[i].ystep,scaleinfo[i].width,scaleinfo[i].height,scaleinfo[i].grpnumperline,
|
||
|
// scaleinfo[i].totalgrp,scaleinfo[i].imgoff,scaleinfo[i].factor);
|
||
|
cv::ocl::resize(gimg, resizeroi, Size(sz.width - 1, sz.height - 1), 0, 0, INTER_LINEAR);
|
||
|
//cv::imwrite("D:\\1.jpg",gimg1);
|
||
|
cv::ocl::integral(resizeroi, gimgroi, gimgroisq);
|
||
|
//cv::ocl::oclMat chk(sz.height,sz.width,CV_32SC1),chksq(sz.height,sz.width,CV_32FC1);
|
||
|
//cv::ocl::integral(gimg1, chk, chksq);
|
||
|
//double r = cv::norm(chk,gimgroi,NORM_INF);
|
||
|
//if(r > std::numeric_limits<double>::epsilon())
|
||
|
//{
|
||
|
// printf("failed");
|
||
|
//}
|
||
|
indexy += sz.height;
|
||
|
}
|
||
|
//int ystep = factor > 2 ? 1 : 2;
|
||
|
// t = (double)cvGetTickCount() - t;
|
||
|
//printf( "resize integral time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
//t = (double)cvGetTickCount();
|
||
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||
|
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||
|
|
||
|
//int m,n;
|
||
|
//m = (gsum.cols - 1 - cascade->orig_window_size.width + ystep - 1)/ystep;
|
||
|
//n = (gsum.rows - 1 - cascade->orig_window_size.height + ystep - 1)/ystep;
|
||
|
//int counter = m*n;
|
||
|
|
||
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
|
||
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
|
||
|
//if(flag == 0){
|
||
|
candidate = (int *)malloc(4 * sizeof(int) * outputsz);
|
||
|
//memset((char*)candidate,0,4*sizeof(int)*outputsz);
|
||
|
gpuSetImagesForHaarClassifierCascade( cascade,/* &sum1, &sqsum1, _tilted,*/ 1., gsum.step / 4 );
|
||
|
|
||
|
//cascadebuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifierCascade),NULL,&status);
|
||
|
//openCLVerifyCall(status);
|
||
|
//openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,cascadebuffer,1,0,sizeof(GpuHidHaarClassifierCascade),gcascade,0,NULL,NULL));
|
||
|
|
||
|
stagebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
|
||
|
|
||
|
//classifierbuffer = clCreateBuffer(gsum.clCxt->clContext,CL_MEM_READ_ONLY,sizeof(GpuHidHaarClassifier)*totalclassifier,NULL,&status);
|
||
|
//status = clEnqueueWriteBuffer(gsum.clCxt->clCmdQueue,classifierbuffer,1,0,sizeof(GpuHidHaarClassifier)*totalclassifier,classifier,0,NULL,NULL);
|
||
|
|
||
|
nodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY,
|
||
|
nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, nodebuffer, 1, 0,
|
||
|
nodenum * sizeof(GpuHidHaarTreeNode),
|
||
|
node, 0, NULL, NULL));
|
||
|
candidatebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_WRITE_ONLY, 4 * sizeof(int) * outputsz, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
scaleinfobuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
|
||
|
//flag = 1;
|
||
|
//}
|
||
|
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
//printf( "update time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
|
||
|
//size_t globalThreads[3] = { counter+blocksize*blocksize-counter%(blocksize*blocksize),1,1};
|
||
|
//t = (double)cvGetTickCount();
|
||
|
int startstage = 0;
|
||
|
int endstage = gcascade->count;
|
||
|
int startnode = 0;
|
||
|
int pixelstep = gsum.step / 4;
|
||
|
int splitstage = 3;
|
||
|
int splitnode = stage[0].count + stage[1].count + stage[2].count;
|
||
|
cl_int4 p, pq;
|
||
|
p.s[0] = gcascade->p0;
|
||
|
p.s[1] = gcascade->p1;
|
||
|
p.s[2] = gcascade->p2;
|
||
|
p.s[3] = gcascade->p3;
|
||
|
pq.s[0] = gcascade->pq0;
|
||
|
pq.s[1] = gcascade->pq1;
|
||
|
pq.s[2] = gcascade->pq2;
|
||
|
pq.s[3] = gcascade->pq3;
|
||
|
float correction = gcascade->inv_window_area;
|
||
|
int argcount = 0;
|
||
|
//int grpnumperline = ((m + localThreads[0] - 1) / localThreads[0]);
|
||
|
//int totalgrp = ((n + localThreads[1] - 1) / localThreads[1])*grpnumperline;
|
||
|
openCLVerifyKernel(gsum.clCxt, kernel, &blocksize, globalThreads, localThreads);
|
||
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_mem),(void*)&cascadebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&stagebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&scaleinfobuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&nodebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsum.data));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsqsum.data));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&candidatebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&pixelstep));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&loopcount));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&endstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startnode));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitnode));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int4), (void *)&p));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int4), (void *)&pq));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_float), (void *)&correction));
|
||
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&n));
|
||
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&grpnumperline));
|
||
|
//openCLSafeCall(clSetKernelArg(kernel,argcount++,sizeof(cl_int),(void*)&totalgrp));
|
||
|
|
||
|
openCLSafeCall(clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel, 2, NULL, globalThreads, localThreads, 0, NULL, NULL));
|
||
|
|
||
|
openCLSafeCall(clFinish(gsum.clCxt->impl->clCmdQueue));
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
//printf( "detection time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
//t = (double)cvGetTickCount();
|
||
|
openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, 0, 4 * sizeof(int)*outputsz, candidate, 0, NULL, NULL));
|
||
|
|
||
|
|
||
|
for(int i = 0; i < outputsz; i++)
|
||
|
if(candidate[4*i+2] != 0)
|
||
|
allCandidates.push_back(Rect(candidate[4*i], candidate[4*i+1], candidate[4*i+2], candidate[4*i+3]));
|
||
|
// t = (double)cvGetTickCount() - t;
|
||
|
//printf( "post time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
//t = (double)cvGetTickCount();
|
||
|
free(scaleinfo);
|
||
|
free(candidate);
|
||
|
//openCLSafeCall(clReleaseMemObject(cascadebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(stagebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(nodebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(candidatebuffer));
|
||
|
openCLSafeCall(clReleaseKernel(kernel));
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
//printf( "release time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
CvSize winsize0 = cascade->orig_window_size;
|
||
|
int n_factors = 0;
|
||
|
int flag = 0;
|
||
|
oclMat gsum;
|
||
|
oclMat gsqsum;
|
||
|
cv::ocl::integral(gimg, gsum, gsqsum);
|
||
|
CvSize sz;
|
||
|
vector<CvSize> sizev;
|
||
|
vector<float> scalev;
|
||
|
gpuSetHaarClassifierCascade(cascade);
|
||
|
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||
|
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||
|
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||
|
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||
|
cl_mem stagebuffer;
|
||
|
//cl_mem classifierbuffer;
|
||
|
cl_mem nodebuffer;
|
||
|
cl_mem candidatebuffer;
|
||
|
cl_mem scaleinfobuffer;
|
||
|
cl_mem pbuffer;
|
||
|
cl_mem correctionbuffer;
|
||
|
for( n_factors = 0, factor = 1;
|
||
|
cvRound(factor * winsize0.width) < gimg.cols - 10 &&
|
||
|
cvRound(factor * winsize0.height) < gimg.rows - 10;
|
||
|
n_factors++, factor *= scaleFactor )
|
||
|
{
|
||
|
CvSize winSize = { cvRound( winsize0.width *factor ),
|
||
|
cvRound( winsize0.height *factor )
|
||
|
};
|
||
|
if( winSize.width < minSize.width || winSize.height < minSize.height )
|
||
|
{
|
||
|
continue;
|
||
|
}
|
||
|
sizev.push_back(winSize);
|
||
|
scalev.push_back(factor);
|
||
|
}
|
||
|
int loopcount = scalev.size();
|
||
|
if(loopcount == 0)
|
||
|
{
|
||
|
loopcount = 1;
|
||
|
n_factors = 1;
|
||
|
sizev.push_back(minSize);
|
||
|
scalev.push_back( min(cvRound(minSize.width / winsize0.width), cvRound(minSize.height / winsize0.height)) );
|
||
|
|
||
|
}
|
||
|
detect_piramid_info *scaleinfo = (detect_piramid_info *)malloc(sizeof(detect_piramid_info) * loopcount);
|
||
|
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * loopcount);
|
||
|
float *correction = (float *)malloc(sizeof(float) * loopcount);
|
||
|
int grp_per_CU = 12;
|
||
|
size_t blocksize = 8;
|
||
|
size_t localThreads[3] = { blocksize, blocksize , 1 };
|
||
|
size_t globalThreads[3] = { grp_per_CU *gsum.clCxt->impl->maxComputeUnits *localThreads[0],
|
||
|
localThreads[1], 1
|
||
|
};
|
||
|
int outputsz = 256 * globalThreads[0] / localThreads[0];
|
||
|
int nodenum = (datasize - sizeof(GpuHidHaarClassifierCascade) -
|
||
|
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
|
||
|
nodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY,
|
||
|
nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, nodebuffer, 1, 0,
|
||
|
nodenum * sizeof(GpuHidHaarTreeNode),
|
||
|
node, 0, NULL, NULL));
|
||
|
cl_mem newnodebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_WRITE,
|
||
|
loopcount * nodenum * sizeof(GpuHidHaarTreeNode), NULL, &status);
|
||
|
int startstage = 0;
|
||
|
int endstage = gcascade->count;
|
||
|
cl_kernel kernel;
|
||
|
kernel = openCLGetKernelFromSource(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2");
|
||
|
cl_kernel kernel2 = openCLGetKernelFromSource(gimg.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier");
|
||
|
for(int i = 0; i < loopcount; i++)
|
||
|
{
|
||
|
sz = sizev[i];
|
||
|
factor = scalev[i];
|
||
|
int ystep = cvRound(std::max(2., factor));
|
||
|
int equRect_x = (int)(factor * gcascade->p0 + 0.5);
|
||
|
int equRect_y = (int)(factor * gcascade->p1 + 0.5);
|
||
|
int equRect_w = (int)(factor * gcascade->p3 + 0.5);
|
||
|
int equRect_h = (int)(factor * gcascade->p2 + 0.5);
|
||
|
p[i].s[0] = equRect_x;
|
||
|
p[i].s[1] = equRect_y;
|
||
|
p[i].s[2] = equRect_x + equRect_w;
|
||
|
p[i].s[3] = equRect_y + equRect_h;
|
||
|
correction[i] = 1. / (equRect_w * equRect_h);
|
||
|
int width = (gsum.cols - 1 - sz.width + ystep - 1) / ystep;
|
||
|
int height = (gsum.rows - 1 - sz.height + ystep - 1) / ystep;
|
||
|
int grpnumperline = (width + localThreads[0] - 1) / localThreads[0];
|
||
|
int totalgrp = ((height + localThreads[1] - 1) / localThreads[1]) * grpnumperline;
|
||
|
//outputsz +=width*height;
|
||
|
scaleinfo[i].width_height = (width << 16) | height;
|
||
|
scaleinfo[i].grpnumperline_totalgrp = (grpnumperline << 16) | totalgrp;
|
||
|
scaleinfo[i].imgoff = 0;
|
||
|
scaleinfo[i].factor = factor;
|
||
|
int startnodenum = nodenum * i;
|
||
|
int argcounts = 0;
|
||
|
float factor2 = (float)factor;
|
||
|
openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_mem), (void *)&nodebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_mem), (void *)&newnodebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_float), (void *)&factor2));
|
||
|
openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_float), (void *)&correction[i]));
|
||
|
openCLSafeCall(clSetKernelArg(kernel2, argcounts++, sizeof(cl_int), (void *)&startnodenum));
|
||
|
size_t globalThreads2[1] = {nodenum};
|
||
|
clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel2, 1, NULL, globalThreads2, 0, 0, NULL, NULL);
|
||
|
clFinish(gsum.clCxt->impl->clCmdQueue);
|
||
|
}
|
||
|
clReleaseKernel(kernel2);
|
||
|
int step = gsum.step / 4;
|
||
|
int startnode = 0;
|
||
|
int splitstage = 3;
|
||
|
int splitnode = stage[0].count + stage[1].count + stage[2].count;
|
||
|
stagebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
|
||
|
candidatebuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_WRITE_ONLY | CL_MEM_ALLOC_HOST_PTR, 4 * sizeof(int) * outputsz, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
scaleinfobuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount, NULL, &status);
|
||
|
openCLVerifyCall(status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, scaleinfobuffer, 1, 0, sizeof(detect_piramid_info)*loopcount, scaleinfo, 0, NULL, NULL));
|
||
|
pbuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(cl_int4) * loopcount, NULL, &status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, pbuffer, 1, 0, sizeof(cl_int4)*loopcount, p, 0, NULL, NULL));
|
||
|
correctionbuffer = clCreateBuffer(gsum.clCxt->impl->clContext, CL_MEM_READ_ONLY, sizeof(cl_float) * loopcount, NULL, &status);
|
||
|
openCLSafeCall(clEnqueueWriteBuffer(gsum.clCxt->impl->clCmdQueue, correctionbuffer, 1, 0, sizeof(cl_float)*loopcount, correction, 0, NULL, NULL));
|
||
|
int argcount = 0;
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&stagebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&scaleinfobuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&newnodebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsum.data));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&gsqsum.data));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&candidatebuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&step));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&loopcount));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&endstage));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&startnode));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&splitnode));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&pbuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_mem), (void *)&correctionbuffer));
|
||
|
openCLSafeCall(clSetKernelArg(kernel, argcount++, sizeof(cl_int), (void *)&nodenum));
|
||
|
openCLSafeCall(clEnqueueNDRangeKernel(gsum.clCxt->impl->clCmdQueue, kernel, 2, NULL, globalThreads, localThreads, 0, NULL, NULL));
|
||
|
|
||
|
openCLSafeCall(clFinish(gsum.clCxt->impl->clCmdQueue));
|
||
|
|
||
|
//openCLSafeCall(clEnqueueReadBuffer(gsum.clCxt->clCmdQueue,candidatebuffer,1,0,4*sizeof(int)*outputsz,candidate,0,NULL,NULL));
|
||
|
candidate = (int *)clEnqueueMapBuffer(gsum.clCxt->impl->clCmdQueue, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int), 0, 0, 0, &status);
|
||
|
|
||
|
for(int i = 0; i < outputsz; i++)
|
||
|
{
|
||
|
if(candidate[4*i+2] != 0)
|
||
|
allCandidates.push_back(Rect(candidate[4*i], candidate[4*i+1], candidate[4*i+2], candidate[4*i+3]));
|
||
|
}
|
||
|
|
||
|
free(scaleinfo);
|
||
|
free(p);
|
||
|
free(correction);
|
||
|
clEnqueueUnmapMemObject(gsum.clCxt->impl->clCmdQueue, candidatebuffer, candidate, 0, 0, 0);
|
||
|
openCLSafeCall(clReleaseMemObject(stagebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(nodebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(newnodebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(candidatebuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(pbuffer));
|
||
|
openCLSafeCall(clReleaseMemObject(correctionbuffer));
|
||
|
}
|
||
|
//t = (double)cvGetTickCount() ;
|
||
|
cvFree(&cascade->hid_cascade);
|
||
|
// printf("%d\n",globalcounter);
|
||
|
rectList.resize(allCandidates.size());
|
||
|
if(!allCandidates.empty())
|
||
|
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
|
||
|
|
||
|
//cout << "count = " << rectList.size()<< endl;
|
||
|
|
||
|
if( minNeighbors != 0 || findBiggestObject )
|
||
|
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
|
||
|
else
|
||
|
rweights.resize(rectList.size(), 0);
|
||
|
|
||
|
|
||
|
if( findBiggestObject && rectList.size() )
|
||
|
{
|
||
|
CvAvgComp result_comp = {{0, 0, 0, 0}, 0};
|
||
|
|
||
|
for( size_t i = 0; i < rectList.size(); i++ )
|
||
|
{
|
||
|
cv::Rect r = rectList[i];
|
||
|
if( r.area() > cv::Rect(result_comp.rect).area() )
|
||
|
{
|
||
|
result_comp.rect = r;
|
||
|
result_comp.neighbors = rweights[i];
|
||
|
}
|
||
|
}
|
||
|
cvSeqPush( result_seq, &result_comp );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for( size_t i = 0; i < rectList.size(); i++ )
|
||
|
{
|
||
|
CvAvgComp c;
|
||
|
c.rect = rectList[i];
|
||
|
c.neighbors = rweights[i];
|
||
|
cvSeqPush( result_seq, &c );
|
||
|
}
|
||
|
}
|
||
|
//t = (double)cvGetTickCount() - t;
|
||
|
//printf( "get face time = %g ms\n", t/((double)cvGetTickFrequency()*1000.) );
|
||
|
//alltime = (double)cvGetTickCount() - alltime;
|
||
|
//printf( "all time = %g ms\n", alltime/((double)cvGetTickFrequency()*1000.) );
|
||
|
return result_seq;
|
||
|
}
|
||
|
|
||
|
|
||
|
CvHaarClassifierCascade*
|
||
|
gpuLoadCascadeCART( const char **input_cascade, int n, CvSize orig_window_size )
|
||
|
{
|
||
|
int i;
|
||
|
CvHaarClassifierCascade *cascade = gpuCreateHaarClassifierCascade(n);
|
||
|
cascade->orig_window_size = orig_window_size;
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
int j, count, l;
|
||
|
float threshold = 0;
|
||
|
const char *stage = input_cascade[i];
|
||
|
int dl = 0;
|
||
|
|
||
|
/* tree links */
|
||
|
int parent = -1;
|
||
|
int next = -1;
|
||
|
|
||
|
sscanf( stage, "%d%n", &count, &dl );
|
||
|
stage += dl;
|
||
|
|
||
|
assert( count > 0 );
|
||
|
cascade->stage_classifier[i].count = count;
|
||
|
cascade->stage_classifier[i].classifier =
|
||
|
(CvHaarClassifier *)cvAlloc( count * sizeof(cascade->stage_classifier[i].classifier[0]));
|
||
|
|
||
|
for( j = 0; j < count; j++ )
|
||
|
{
|
||
|
CvHaarClassifier *classifier = cascade->stage_classifier[i].classifier + j;
|
||
|
int k, rects = 0;
|
||
|
char str[100];
|
||
|
|
||
|
sscanf( stage, "%d%n", &classifier->count, &dl );
|
||
|
stage += dl;
|
||
|
|
||
|
classifier->haar_feature = (CvHaarFeature *) cvAlloc(
|
||
|
classifier->count * ( sizeof( *classifier->haar_feature ) +
|
||
|
sizeof( *classifier->threshold ) +
|
||
|
sizeof( *classifier->left ) +
|
||
|
sizeof( *classifier->right ) ) +
|
||
|
(classifier->count + 1) * sizeof( *classifier->alpha ) );
|
||
|
classifier->threshold = (float *) (classifier->haar_feature + classifier->count);
|
||
|
classifier->left = (int *) (classifier->threshold + classifier->count);
|
||
|
classifier->right = (int *) (classifier->left + classifier->count);
|
||
|
classifier->alpha = (float *) (classifier->right + classifier->count);
|
||
|
|
||
|
for( l = 0; l < classifier->count; l++ )
|
||
|
{
|
||
|
sscanf( stage, "%d%n", &rects, &dl );
|
||
|
stage += dl;
|
||
|
|
||
|
assert( rects >= 2 && rects <= CV_HAAR_FEATURE_MAX );
|
||
|
|
||
|
for( k = 0; k < rects; k++ )
|
||
|
{
|
||
|
CvRect r;
|
||
|
int band = 0;
|
||
|
sscanf( stage, "%d%d%d%d%d%f%n",
|
||
|
&r.x, &r.y, &r.width, &r.height, &band,
|
||
|
&(classifier->haar_feature[l].rect[k].weight), &dl );
|
||
|
stage += dl;
|
||
|
classifier->haar_feature[l].rect[k].r = r;
|
||
|
}
|
||
|
sscanf( stage, "%s%n", str, &dl );
|
||
|
stage += dl;
|
||
|
|
||
|
classifier->haar_feature[l].tilted = strncmp( str, "tilted", 6 ) == 0;
|
||
|
|
||
|
for( k = rects; k < CV_HAAR_FEATURE_MAX; k++ )
|
||
|
{
|
||
|
memset( classifier->haar_feature[l].rect + k, 0,
|
||
|
sizeof(classifier->haar_feature[l].rect[k]) );
|
||
|
}
|
||
|
|
||
|
sscanf( stage, "%f%d%d%n", &(classifier->threshold[l]),
|
||
|
&(classifier->left[l]),
|
||
|
&(classifier->right[l]), &dl );
|
||
|
stage += dl;
|
||
|
}
|
||
|
for( l = 0; l <= classifier->count; l++ )
|
||
|
{
|
||
|
sscanf( stage, "%f%n", &(classifier->alpha[l]), &dl );
|
||
|
stage += dl;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
sscanf( stage, "%f%n", &threshold, &dl );
|
||
|
stage += dl;
|
||
|
|
||
|
cascade->stage_classifier[i].threshold = threshold;
|
||
|
|
||
|
/* load tree links */
|
||
|
if( sscanf( stage, "%d%d%n", &parent, &next, &dl ) != 2 )
|
||
|
{
|
||
|
parent = i - 1;
|
||
|
next = -1;
|
||
|
}
|
||
|
stage += dl;
|
||
|
|
||
|
cascade->stage_classifier[i].parent = parent;
|
||
|
cascade->stage_classifier[i].next = next;
|
||
|
cascade->stage_classifier[i].child = -1;
|
||
|
|
||
|
if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
|
||
|
{
|
||
|
cascade->stage_classifier[parent].child = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return cascade;
|
||
|
}
|
||
|
|
||
|
#ifndef _MAX_PATH
|
||
|
#define _MAX_PATH 1024
|
||
|
#endif
|
||
|
|
||
|
CV_IMPL CvHaarClassifierCascade*
|
||
|
gpuLoadHaarClassifierCascade( const char *directory, CvSize orig_window_size )
|
||
|
{
|
||
|
const char **input_cascade = 0;
|
||
|
CvHaarClassifierCascade *cascade = 0;
|
||
|
|
||
|
int i, n;
|
||
|
const char *slash;
|
||
|
char name[_MAX_PATH];
|
||
|
int size = 0;
|
||
|
char *ptr = 0;
|
||
|
|
||
|
if( !directory )
|
||
|
CV_Error( CV_StsNullPtr, "Null path is passed" );
|
||
|
|
||
|
n = (int)strlen(directory) - 1;
|
||
|
slash = directory[n] == '\\' || directory[n] == '/' ? "" : "/";
|
||
|
|
||
|
/* try to read the classifier from directory */
|
||
|
for( n = 0; ; n++ )
|
||
|
{
|
||
|
sprintf( name, "%s%s%d/AdaBoostCARTHaarClassifier.txt", directory, slash, n );
|
||
|
FILE *f = fopen( name, "rb" );
|
||
|
if( !f )
|
||
|
break;
|
||
|
fseek( f, 0, SEEK_END );
|
||
|
size += ftell( f ) + 1;
|
||
|
fclose(f);
|
||
|
}
|
||
|
|
||
|
if( n == 0 && slash[0] )
|
||
|
return (CvHaarClassifierCascade *)cvLoad( directory );
|
||
|
|
||
|
if( n == 0 )
|
||
|
CV_Error( CV_StsBadArg, "Invalid path" );
|
||
|
|
||
|
size += (n + 1) * sizeof(char *);
|
||
|
input_cascade = (const char **)cvAlloc( size );
|
||
|
ptr = (char *)(input_cascade + n + 1);
|
||
|
|
||
|
for( i = 0; i < n; i++ )
|
||
|
{
|
||
|
sprintf( name, "%s/%d/AdaBoostCARTHaarClassifier.txt", directory, i );
|
||
|
FILE *f = fopen( name, "rb" );
|
||
|
if( !f )
|
||
|
CV_Error( CV_StsError, "" );
|
||
|
fseek( f, 0, SEEK_END );
|
||
|
size = ftell( f );
|
||
|
fseek( f, 0, SEEK_SET );
|
||
|
fread( ptr, 1, size, f );
|
||
|
fclose(f);
|
||
|
input_cascade[i] = ptr;
|
||
|
ptr += size;
|
||
|
*ptr++ = '\0';
|
||
|
}
|
||
|
|
||
|
input_cascade[n] = 0;
|
||
|
cascade = gpuLoadCascadeCART( input_cascade, n, orig_window_size );
|
||
|
|
||
|
if( input_cascade )
|
||
|
cvFree( &input_cascade );
|
||
|
|
||
|
return cascade;
|
||
|
}
|
||
|
|
||
|
|
||
|
CV_IMPL void
|
||
|
gpuReleaseHaarClassifierCascade( CvHaarClassifierCascade **_cascade )
|
||
|
{
|
||
|
if( _cascade && *_cascade )
|
||
|
{
|
||
|
int i, j;
|
||
|
CvHaarClassifierCascade *cascade = *_cascade;
|
||
|
|
||
|
for( i = 0; i < cascade->count; i++ )
|
||
|
{
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||
|
cvFree( &cascade->stage_classifier[i].classifier[j].haar_feature );
|
||
|
cvFree( &cascade->stage_classifier[i].classifier );
|
||
|
}
|
||
|
gpuReleaseHidHaarClassifierCascade( (GpuHidHaarClassifierCascade **)&cascade->hid_cascade );
|
||
|
cvFree( _cascade );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/****************************************************************************************\
|
||
|
* Persistence functions *
|
||
|
\****************************************************************************************/
|
||
|
|
||
|
/* field names */
|
||
|
|
||
|
#define ICV_HAAR_SIZE_NAME "size"
|
||
|
#define ICV_HAAR_STAGES_NAME "stages"
|
||
|
#define ICV_HAAR_TREES_NAME "trees"
|
||
|
#define ICV_HAAR_FEATURE_NAME "feature"
|
||
|
#define ICV_HAAR_RECTS_NAME "rects"
|
||
|
#define ICV_HAAR_TILTED_NAME "tilted"
|
||
|
#define ICV_HAAR_THRESHOLD_NAME "threshold"
|
||
|
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
|
||
|
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
|
||
|
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
|
||
|
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
|
||
|
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
|
||
|
#define ICV_HAAR_PARENT_NAME "parent"
|
||
|
#define ICV_HAAR_NEXT_NAME "next"
|
||
|
|
||
|
int
|
||
|
gpuIsHaarClassifier( const void *struct_ptr )
|
||
|
{
|
||
|
return CV_IS_HAAR_CLASSIFIER( struct_ptr );
|
||
|
}
|
||
|
|
||
|
void*
|
||
|
gpuReadHaarClassifier( CvFileStorage *fs, CvFileNode *node )
|
||
|
{
|
||
|
CvHaarClassifierCascade *cascade = NULL;
|
||
|
|
||
|
char buf[256];
|
||
|
CvFileNode *seq_fn = NULL; /* sequence */
|
||
|
CvFileNode *fn = NULL;
|
||
|
CvFileNode *stages_fn = NULL;
|
||
|
CvSeqReader stages_reader;
|
||
|
int n;
|
||
|
int i, j, k, l;
|
||
|
int parent, next;
|
||
|
|
||
|
stages_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_STAGES_NAME );
|
||
|
if( !stages_fn || !CV_NODE_IS_SEQ( stages_fn->tag) )
|
||
|
CV_Error( CV_StsError, "Invalid stages node" );
|
||
|
|
||
|
n = stages_fn->data.seq->total;
|
||
|
cascade = gpuCreateHaarClassifierCascade(n);
|
||
|
|
||
|
/* read size */
|
||
|
seq_fn = cvGetFileNodeByName( fs, node, ICV_HAAR_SIZE_NAME );
|
||
|
if( !seq_fn || !CV_NODE_IS_SEQ( seq_fn->tag ) || seq_fn->data.seq->total != 2 )
|
||
|
CV_Error( CV_StsError, "size node is not a valid sequence." );
|
||
|
fn = (CvFileNode *) cvGetSeqElem( seq_fn->data.seq, 0 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
|
||
|
CV_Error( CV_StsError, "Invalid size node: width must be positive integer" );
|
||
|
cascade->orig_window_size.width = fn->data.i;
|
||
|
fn = (CvFileNode *) cvGetSeqElem( seq_fn->data.seq, 1 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0 )
|
||
|
CV_Error( CV_StsError, "Invalid size node: height must be positive integer" );
|
||
|
cascade->orig_window_size.height = fn->data.i;
|
||
|
|
||
|
cvStartReadSeq( stages_fn->data.seq, &stages_reader );
|
||
|
for( i = 0; i < n; ++i )
|
||
|
{
|
||
|
CvFileNode *stage_fn;
|
||
|
CvFileNode *trees_fn;
|
||
|
CvSeqReader trees_reader;
|
||
|
|
||
|
stage_fn = (CvFileNode *) stages_reader.ptr;
|
||
|
if( !CV_NODE_IS_MAP( stage_fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "Invalid stage %d", i );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
trees_fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_TREES_NAME );
|
||
|
if( !trees_fn || !CV_NODE_IS_SEQ( trees_fn->tag )
|
||
|
|| trees_fn->data.seq->total <= 0 )
|
||
|
{
|
||
|
sprintf( buf, "Trees node is not a valid sequence. (stage %d)", i );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
cascade->stage_classifier[i].classifier =
|
||
|
(CvHaarClassifier *) cvAlloc( trees_fn->data.seq->total
|
||
|
* sizeof( cascade->stage_classifier[i].classifier[0] ) );
|
||
|
for( j = 0; j < trees_fn->data.seq->total; ++j )
|
||
|
{
|
||
|
cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
|
||
|
}
|
||
|
cascade->stage_classifier[i].count = trees_fn->data.seq->total;
|
||
|
|
||
|
cvStartReadSeq( trees_fn->data.seq, &trees_reader );
|
||
|
for( j = 0; j < trees_fn->data.seq->total; ++j )
|
||
|
{
|
||
|
CvFileNode *tree_fn;
|
||
|
CvSeqReader tree_reader;
|
||
|
CvHaarClassifier *classifier;
|
||
|
int last_idx;
|
||
|
|
||
|
classifier = &cascade->stage_classifier[i].classifier[j];
|
||
|
tree_fn = (CvFileNode *) trees_reader.ptr;
|
||
|
if( !CV_NODE_IS_SEQ( tree_fn->tag ) || tree_fn->data.seq->total <= 0 )
|
||
|
{
|
||
|
sprintf( buf, "Tree node is not a valid sequence."
|
||
|
" (stage %d, tree %d)", i, j );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
classifier->count = tree_fn->data.seq->total;
|
||
|
classifier->haar_feature = (CvHaarFeature *) cvAlloc(
|
||
|
classifier->count * ( sizeof( *classifier->haar_feature ) +
|
||
|
sizeof( *classifier->threshold ) +
|
||
|
sizeof( *classifier->left ) +
|
||
|
sizeof( *classifier->right ) ) +
|
||
|
(classifier->count + 1) * sizeof( *classifier->alpha ) );
|
||
|
classifier->threshold = (float *) (classifier->haar_feature + classifier->count);
|
||
|
classifier->left = (int *) (classifier->threshold + classifier->count);
|
||
|
classifier->right = (int *) (classifier->left + classifier->count);
|
||
|
classifier->alpha = (float *) (classifier->right + classifier->count);
|
||
|
|
||
|
cvStartReadSeq( tree_fn->data.seq, &tree_reader );
|
||
|
for( k = 0, last_idx = 0; k < tree_fn->data.seq->total; ++k )
|
||
|
{
|
||
|
CvFileNode *node_fn;
|
||
|
CvFileNode *feature_fn;
|
||
|
CvFileNode *rects_fn;
|
||
|
CvSeqReader rects_reader;
|
||
|
|
||
|
node_fn = (CvFileNode *) tree_reader.ptr;
|
||
|
if( !CV_NODE_IS_MAP( node_fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "Tree node %d is not a valid map. (stage %d, tree %d)",
|
||
|
k, i, j );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
feature_fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_FEATURE_NAME );
|
||
|
if( !feature_fn || !CV_NODE_IS_MAP( feature_fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "Feature node is not a valid map. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
rects_fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_RECTS_NAME );
|
||
|
if( !rects_fn || !CV_NODE_IS_SEQ( rects_fn->tag )
|
||
|
|| rects_fn->data.seq->total < 1
|
||
|
|| rects_fn->data.seq->total > CV_HAAR_FEATURE_MAX )
|
||
|
{
|
||
|
sprintf( buf, "Rects node is not a valid sequence. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
cvStartReadSeq( rects_fn->data.seq, &rects_reader );
|
||
|
for( l = 0; l < rects_fn->data.seq->total; ++l )
|
||
|
{
|
||
|
CvFileNode *rect_fn;
|
||
|
CvRect r;
|
||
|
|
||
|
rect_fn = (CvFileNode *) rects_reader.ptr;
|
||
|
if( !CV_NODE_IS_SEQ( rect_fn->tag ) || rect_fn->data.seq->total != 5 )
|
||
|
{
|
||
|
sprintf( buf, "Rect %d is not a valid sequence. "
|
||
|
"(stage %d, tree %d, node %d)", l, i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 0 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
|
||
|
{
|
||
|
sprintf( buf, "x coordinate must be non-negative integer. "
|
||
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
r.x = fn->data.i;
|
||
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 1 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i < 0 )
|
||
|
{
|
||
|
sprintf( buf, "y coordinate must be non-negative integer. "
|
||
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
r.y = fn->data.i;
|
||
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 2 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
|
||
|
|| r.x + fn->data.i > cascade->orig_window_size.width )
|
||
|
{
|
||
|
sprintf( buf, "width must be positive integer and "
|
||
|
"(x + width) must not exceed window width. "
|
||
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
r.width = fn->data.i;
|
||
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 3 );
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= 0
|
||
|
|| r.y + fn->data.i > cascade->orig_window_size.height )
|
||
|
{
|
||
|
sprintf( buf, "height must be positive integer and "
|
||
|
"(y + height) must not exceed window height. "
|
||
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
r.height = fn->data.i;
|
||
|
fn = CV_SEQ_ELEM( rect_fn->data.seq, CvFileNode, 4 );
|
||
|
if( !CV_NODE_IS_REAL( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "weight must be real number. "
|
||
|
"(stage %d, tree %d, node %d, rect %d)", i, j, k, l );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
classifier->haar_feature[k].rect[l].weight = (float) fn->data.f;
|
||
|
classifier->haar_feature[k].rect[l].r = r;
|
||
|
|
||
|
CV_NEXT_SEQ_ELEM( sizeof( *rect_fn ), rects_reader );
|
||
|
} /* for each rect */
|
||
|
for( l = rects_fn->data.seq->total; l < CV_HAAR_FEATURE_MAX; ++l )
|
||
|
{
|
||
|
classifier->haar_feature[k].rect[l].weight = 0;
|
||
|
classifier->haar_feature[k].rect[l].r = cvRect( 0, 0, 0, 0 );
|
||
|
}
|
||
|
|
||
|
fn = cvGetFileNodeByName( fs, feature_fn, ICV_HAAR_TILTED_NAME);
|
||
|
if( !fn || !CV_NODE_IS_INT( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "tilted must be 0 or 1. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
classifier->haar_feature[k].tilted = ( fn->data.i != 0 );
|
||
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_THRESHOLD_NAME);
|
||
|
if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "threshold must be real number. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
classifier->threshold[k] = (float) fn->data.f;
|
||
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_NODE_NAME);
|
||
|
if( fn )
|
||
|
{
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
|
||
|
|| fn->data.i >= tree_fn->data.seq->total )
|
||
|
{
|
||
|
sprintf( buf, "left node must be valid node number. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
/* left node */
|
||
|
classifier->left[k] = fn->data.i;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_LEFT_VAL_NAME );
|
||
|
if( !fn )
|
||
|
{
|
||
|
sprintf( buf, "left node or left value must be specified. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
if( !CV_NODE_IS_REAL( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "left value must be real number. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
/* left value */
|
||
|
if( last_idx >= classifier->count + 1 )
|
||
|
{
|
||
|
sprintf( buf, "Tree structure is broken: too many values. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
classifier->left[k] = -last_idx;
|
||
|
classifier->alpha[last_idx++] = (float) fn->data.f;
|
||
|
}
|
||
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_NODE_NAME);
|
||
|
if( fn )
|
||
|
{
|
||
|
if( !CV_NODE_IS_INT( fn->tag ) || fn->data.i <= k
|
||
|
|| fn->data.i >= tree_fn->data.seq->total )
|
||
|
{
|
||
|
sprintf( buf, "right node must be valid node number. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
/* right node */
|
||
|
classifier->right[k] = fn->data.i;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
fn = cvGetFileNodeByName( fs, node_fn, ICV_HAAR_RIGHT_VAL_NAME );
|
||
|
if( !fn )
|
||
|
{
|
||
|
sprintf( buf, "right node or right value must be specified. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
if( !CV_NODE_IS_REAL( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "right value must be real number. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
/* right value */
|
||
|
if( last_idx >= classifier->count + 1 )
|
||
|
{
|
||
|
sprintf( buf, "Tree structure is broken: too many values. "
|
||
|
"(stage %d, tree %d, node %d)", i, j, k );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
classifier->right[k] = -last_idx;
|
||
|
classifier->alpha[last_idx++] = (float) fn->data.f;
|
||
|
}
|
||
|
|
||
|
CV_NEXT_SEQ_ELEM( sizeof( *node_fn ), tree_reader );
|
||
|
} /* for each node */
|
||
|
if( last_idx != classifier->count + 1 )
|
||
|
{
|
||
|
sprintf( buf, "Tree structure is broken: too few values. "
|
||
|
"(stage %d, tree %d)", i, j );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
|
||
|
CV_NEXT_SEQ_ELEM( sizeof( *tree_fn ), trees_reader );
|
||
|
} /* for each tree */
|
||
|
|
||
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_STAGE_THRESHOLD_NAME);
|
||
|
if( !fn || !CV_NODE_IS_REAL( fn->tag ) )
|
||
|
{
|
||
|
sprintf( buf, "stage threshold must be real number. (stage %d)", i );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
cascade->stage_classifier[i].threshold = (float) fn->data.f;
|
||
|
|
||
|
parent = i - 1;
|
||
|
next = -1;
|
||
|
|
||
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_PARENT_NAME );
|
||
|
if( !fn || !CV_NODE_IS_INT( fn->tag )
|
||
|
|| fn->data.i < -1 || fn->data.i >= cascade->count )
|
||
|
{
|
||
|
sprintf( buf, "parent must be integer number. (stage %d)", i );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
parent = fn->data.i;
|
||
|
fn = cvGetFileNodeByName( fs, stage_fn, ICV_HAAR_NEXT_NAME );
|
||
|
if( !fn || !CV_NODE_IS_INT( fn->tag )
|
||
|
|| fn->data.i < -1 || fn->data.i >= cascade->count )
|
||
|
{
|
||
|
sprintf( buf, "next must be integer number. (stage %d)", i );
|
||
|
CV_Error( CV_StsError, buf );
|
||
|
}
|
||
|
next = fn->data.i;
|
||
|
|
||
|
cascade->stage_classifier[i].parent = parent;
|
||
|
cascade->stage_classifier[i].next = next;
|
||
|
cascade->stage_classifier[i].child = -1;
|
||
|
|
||
|
if( parent != -1 && cascade->stage_classifier[parent].child == -1 )
|
||
|
{
|
||
|
cascade->stage_classifier[parent].child = i;
|
||
|
}
|
||
|
|
||
|
CV_NEXT_SEQ_ELEM( sizeof( *stage_fn ), stages_reader );
|
||
|
} /* for each stage */
|
||
|
|
||
|
return cascade;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
gpuWriteHaarClassifier( CvFileStorage *fs, const char *name, const void *struct_ptr,
|
||
|
CvAttrList attributes )
|
||
|
{
|
||
|
int i, j, k, l;
|
||
|
char buf[256];
|
||
|
const CvHaarClassifierCascade *cascade = (const CvHaarClassifierCascade *) struct_ptr;
|
||
|
|
||
|
/* TODO: parameters check */
|
||
|
|
||
|
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_HAAR, attributes );
|
||
|
|
||
|
cvStartWriteStruct( fs, ICV_HAAR_SIZE_NAME, CV_NODE_SEQ | CV_NODE_FLOW );
|
||
|
cvWriteInt( fs, NULL, cascade->orig_window_size.width );
|
||
|
cvWriteInt( fs, NULL, cascade->orig_window_size.height );
|
||
|
cvEndWriteStruct( fs ); /* size */
|
||
|
|
||
|
cvStartWriteStruct( fs, ICV_HAAR_STAGES_NAME, CV_NODE_SEQ );
|
||
|
for( i = 0; i < cascade->count; ++i )
|
||
|
{
|
||
|
cvStartWriteStruct( fs, NULL, CV_NODE_MAP );
|
||
|
sprintf( buf, "stage %d", i );
|
||
|
cvWriteComment( fs, buf, 1 );
|
||
|
|
||
|
cvStartWriteStruct( fs, ICV_HAAR_TREES_NAME, CV_NODE_SEQ );
|
||
|
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j )
|
||
|
{
|
||
|
CvHaarClassifier *tree = &cascade->stage_classifier[i].classifier[j];
|
||
|
|
||
|
cvStartWriteStruct( fs, NULL, CV_NODE_SEQ );
|
||
|
sprintf( buf, "tree %d", j );
|
||
|
cvWriteComment( fs, buf, 1 );
|
||
|
|
||
|
for( k = 0; k < tree->count; ++k )
|
||
|
{
|
||
|
CvHaarFeature *feature = &tree->haar_feature[k];
|
||
|
|
||
|
cvStartWriteStruct( fs, NULL, CV_NODE_MAP );
|
||
|
if( k )
|
||
|
{
|
||
|
sprintf( buf, "node %d", k );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
sprintf( buf, "root node" );
|
||
|
}
|
||
|
cvWriteComment( fs, buf, 1 );
|
||
|
|
||
|
cvStartWriteStruct( fs, ICV_HAAR_FEATURE_NAME, CV_NODE_MAP );
|
||
|
|
||
|
cvStartWriteStruct( fs, ICV_HAAR_RECTS_NAME, CV_NODE_SEQ );
|
||
|
for( l = 0; l < CV_HAAR_FEATURE_MAX && feature->rect[l].r.width != 0; ++l )
|
||
|
{
|
||
|
cvStartWriteStruct( fs, NULL, CV_NODE_SEQ | CV_NODE_FLOW );
|
||
|
cvWriteInt( fs, NULL, feature->rect[l].r.x );
|
||
|
cvWriteInt( fs, NULL, feature->rect[l].r.y );
|
||
|
cvWriteInt( fs, NULL, feature->rect[l].r.width );
|
||
|
cvWriteInt( fs, NULL, feature->rect[l].r.height );
|
||
|
cvWriteReal( fs, NULL, feature->rect[l].weight );
|
||
|
cvEndWriteStruct( fs ); /* rect */
|
||
|
}
|
||
|
cvEndWriteStruct( fs ); /* rects */
|
||
|
cvWriteInt( fs, ICV_HAAR_TILTED_NAME, feature->tilted );
|
||
|
cvEndWriteStruct( fs ); /* feature */
|
||
|
|
||
|
cvWriteReal( fs, ICV_HAAR_THRESHOLD_NAME, tree->threshold[k]);
|
||
|
|
||
|
if( tree->left[k] > 0 )
|
||
|
{
|
||
|
cvWriteInt( fs, ICV_HAAR_LEFT_NODE_NAME, tree->left[k] );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cvWriteReal( fs, ICV_HAAR_LEFT_VAL_NAME,
|
||
|
tree->alpha[-tree->left[k]] );
|
||
|
}
|
||
|
|
||
|
if( tree->right[k] > 0 )
|
||
|
{
|
||
|
cvWriteInt( fs, ICV_HAAR_RIGHT_NODE_NAME, tree->right[k] );
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
cvWriteReal( fs, ICV_HAAR_RIGHT_VAL_NAME,
|
||
|
tree->alpha[-tree->right[k]] );
|
||
|
}
|
||
|
|
||
|
cvEndWriteStruct( fs ); /* split */
|
||
|
}
|
||
|
|
||
|
cvEndWriteStruct( fs ); /* tree */
|
||
|
}
|
||
|
|
||
|
cvEndWriteStruct( fs ); /* trees */
|
||
|
|
||
|
cvWriteReal( fs, ICV_HAAR_STAGE_THRESHOLD_NAME, cascade->stage_classifier[i].threshold);
|
||
|
cvWriteInt( fs, ICV_HAAR_PARENT_NAME, cascade->stage_classifier[i].parent );
|
||
|
cvWriteInt( fs, ICV_HAAR_NEXT_NAME, cascade->stage_classifier[i].next );
|
||
|
|
||
|
cvEndWriteStruct( fs ); /* stage */
|
||
|
} /* for each stage */
|
||
|
|
||
|
cvEndWriteStruct( fs ); /* stages */
|
||
|
cvEndWriteStruct( fs ); /* root */
|
||
|
}
|
||
|
|
||
|
void*
|
||
|
gpuCloneHaarClassifier( const void *struct_ptr )
|
||
|
{
|
||
|
CvHaarClassifierCascade *cascade = NULL;
|
||
|
|
||
|
int i, j, k, n;
|
||
|
const CvHaarClassifierCascade *cascade_src =
|
||
|
(const CvHaarClassifierCascade *) struct_ptr;
|
||
|
|
||
|
n = cascade_src->count;
|
||
|
cascade = gpuCreateHaarClassifierCascade(n);
|
||
|
cascade->orig_window_size = cascade_src->orig_window_size;
|
||
|
|
||
|
for( i = 0; i < n; ++i )
|
||
|
{
|
||
|
cascade->stage_classifier[i].parent = cascade_src->stage_classifier[i].parent;
|
||
|
cascade->stage_classifier[i].next = cascade_src->stage_classifier[i].next;
|
||
|
cascade->stage_classifier[i].child = cascade_src->stage_classifier[i].child;
|
||
|
cascade->stage_classifier[i].threshold = cascade_src->stage_classifier[i].threshold;
|
||
|
|
||
|
cascade->stage_classifier[i].count = 0;
|
||
|
cascade->stage_classifier[i].classifier =
|
||
|
(CvHaarClassifier *) cvAlloc( cascade_src->stage_classifier[i].count
|
||
|
* sizeof( cascade->stage_classifier[i].classifier[0] ) );
|
||
|
|
||
|
cascade->stage_classifier[i].count = cascade_src->stage_classifier[i].count;
|
||
|
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j )
|
||
|
cascade->stage_classifier[i].classifier[j].haar_feature = NULL;
|
||
|
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; ++j )
|
||
|
{
|
||
|
const CvHaarClassifier *classifier_src =
|
||
|
&cascade_src->stage_classifier[i].classifier[j];
|
||
|
CvHaarClassifier *classifier =
|
||
|
&cascade->stage_classifier[i].classifier[j];
|
||
|
|
||
|
classifier->count = classifier_src->count;
|
||
|
classifier->haar_feature = (CvHaarFeature *) cvAlloc(
|
||
|
classifier->count * ( sizeof( *classifier->haar_feature ) +
|
||
|
sizeof( *classifier->threshold ) +
|
||
|
sizeof( *classifier->left ) +
|
||
|
sizeof( *classifier->right ) ) +
|
||
|
(classifier->count + 1) * sizeof( *classifier->alpha ) );
|
||
|
classifier->threshold = (float *) (classifier->haar_feature + classifier->count);
|
||
|
classifier->left = (int *) (classifier->threshold + classifier->count);
|
||
|
classifier->right = (int *) (classifier->left + classifier->count);
|
||
|
classifier->alpha = (float *) (classifier->right + classifier->count);
|
||
|
for( k = 0; k < classifier->count; ++k )
|
||
|
{
|
||
|
classifier->haar_feature[k] = classifier_src->haar_feature[k];
|
||
|
classifier->threshold[k] = classifier_src->threshold[k];
|
||
|
classifier->left[k] = classifier_src->left[k];
|
||
|
classifier->right[k] = classifier_src->right[k];
|
||
|
classifier->alpha[k] = classifier_src->alpha[k];
|
||
|
}
|
||
|
classifier->alpha[classifier->count] =
|
||
|
classifier_src->alpha[classifier->count];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return cascade;
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
CvType haar_type( CV_TYPE_NAME_HAAR, gpuIsHaarClassifier,
|
||
|
(CvReleaseFunc)gpuReleaseHaarClassifierCascade,
|
||
|
gpuReadHaarClassifier, gpuWriteHaarClassifier,
|
||
|
gpuCloneHaarClassifier );
|
||
|
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
|
||
|
HaarClassifierCascade::HaarClassifierCascade() {}
|
||
|
HaarClassifierCascade::HaarClassifierCascade(const String &filename)
|
||
|
{
|
||
|
load(filename);
|
||
|
}
|
||
|
|
||
|
bool HaarClassifierCascade::load(const String &filename)
|
||
|
{
|
||
|
cascade = Ptr<CvHaarClassifierCascade>((CvHaarClassifierCascade *)cvLoad(filename.c_str(), 0, 0, 0));
|
||
|
return (CvHaarClassifierCascade *)cascade != 0;
|
||
|
}
|
||
|
|
||
|
void HaarClassifierCascade::detectMultiScale( const Mat &image,
|
||
|
Vector<Rect>& objects, double scaleFactor,
|
||
|
int minNeighbors, int flags,
|
||
|
Size minSize )
|
||
|
{
|
||
|
MemStorage storage(cvCreateMemStorage(0));
|
||
|
CvMat _image = image;
|
||
|
CvSeq *_objects = gpuHaarDetectObjects( &_image, cascade, storage, scaleFactor,
|
||
|
minNeighbors, flags, minSize );
|
||
|
Seq<Rect>(_objects).copyTo(objects);
|
||
|
}
|
||
|
|
||
|
int HaarClassifierCascade::runAt(Point pt, int startStage, int) const
|
||
|
{
|
||
|
return gpuRunHaarClassifierCascade(cascade, pt, startStage);
|
||
|
}
|
||
|
|
||
|
void HaarClassifierCascade::setImages( const Mat &sum, const Mat &sqsum,
|
||
|
const Mat &tilted, double scale )
|
||
|
{
|
||
|
CvMat _sum = sum, _sqsum = sqsum, _tilted = tilted;
|
||
|
gpuSetImagesForHaarClassifierCascade( cascade, &_sum, &_sqsum, &_tilted, scale );
|
||
|
}
|
||
|
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
////////////////////////////////////////////reserved functios//////////////////////////////////////////////////////////////////////////
|
||
|
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
|
||
|
/*#if CV_SSE2
|
||
|
# if CV_SSE4 || defined __SSE4__
|
||
|
# include <smmintrin.h>
|
||
|
# else
|
||
|
# define _mm_blendv_pd(a, b, m) _mm_xor_pd(a, _mm_and_pd(_mm_xor_pd(b, a), m))
|
||
|
# define _mm_blendv_ps(a, b, m) _mm_xor_ps(a, _mm_and_ps(_mm_xor_ps(b, a), m))
|
||
|
# endif
|
||
|
#if defined CV_ICC
|
||
|
# define CV_HAAR_USE_SSE 1
|
||
|
#endif
|
||
|
#endif*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
CV_IMPL void
|
||
|
gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* _cascade,
|
||
|
const CvArr* _sum,
|
||
|
const CvArr* _sqsum,
|
||
|
const CvArr* _tilted_sum,
|
||
|
double scale )
|
||
|
{
|
||
|
CvMat sum_stub, *sum = (CvMat*)_sum;
|
||
|
CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
|
||
|
CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
|
||
|
GpuHidHaarClassifierCascade* cascade;
|
||
|
int coi0 = 0, coi1 = 0;
|
||
|
int i;
|
||
|
int datasize;
|
||
|
int totalclassifier;
|
||
|
CvRect equRect;
|
||
|
double weight_scale;
|
||
|
int rows,cols;
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
|
||
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier pointer" );
|
||
|
|
||
|
if( scale <= 0 )
|
||
|
CV_Error( CV_StsOutOfRange, "Scale must be positive" );
|
||
|
|
||
|
sum = cvGetMat( sum, &sum_stub, &coi0 );
|
||
|
sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
|
||
|
|
||
|
if( coi0 || coi1 )
|
||
|
CV_Error( CV_BadCOI, "COI is not supported" );
|
||
|
|
||
|
if( !CV_ARE_SIZES_EQ( sum, sqsum ))
|
||
|
CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||
|
|
||
|
if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
|
||
|
CV_MAT_TYPE(sum->type) != CV_32SC1 )
|
||
|
CV_Error( CV_StsUnsupportedFormat,
|
||
|
"Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||
|
|
||
|
if( !_cascade->hid_cascade )
|
||
|
gpuCreateHidHaarClassifierCascade(_cascade,&datasize,&totalclassifier);
|
||
|
|
||
|
cascade =(GpuHidHaarClassifierCascade *)_cascade->hid_cascade;
|
||
|
|
||
|
if( cascade->has_tilted_features )
|
||
|
{
|
||
|
tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
|
||
|
|
||
|
if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
|
||
|
CV_Error( CV_StsUnsupportedFormat,
|
||
|
"Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||
|
|
||
|
if( sum->step != tilted->step )
|
||
|
CV_Error( CV_StsUnmatchedSizes,
|
||
|
"Sum and tilted_sum must have the same stride (step, widthStep)" );
|
||
|
|
||
|
if( !CV_ARE_SIZES_EQ( sum, tilted ))
|
||
|
CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||
|
//cascade->tilted = *tilted;
|
||
|
}
|
||
|
|
||
|
_cascade->scale = scale;
|
||
|
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
|
||
|
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
|
||
|
|
||
|
//cascade->sum = *sum;
|
||
|
//cascade->sqsum = *sqsum;
|
||
|
|
||
|
equRect.x = equRect.y = cvRound(scale);
|
||
|
equRect.width = cvRound((_cascade->orig_window_size.width-2)*scale);
|
||
|
equRect.height = cvRound((_cascade->orig_window_size.height-2)*scale);
|
||
|
weight_scale = 1./(equRect.width*equRect.height);
|
||
|
cascade->inv_window_area = weight_scale;
|
||
|
|
||
|
cascade->p0 = sum_elem_ptr(*sum, equRect.y, equRect.x);
|
||
|
cascade->p1 = sum_elem_ptr(*sum, equRect.y, equRect.x + equRect.width );
|
||
|
cascade->p2 = sum_elem_ptr(*sum, equRect.y + equRect.height, equRect.x );
|
||
|
cascade->p3 = sum_elem_ptr(*sum, equRect.y + equRect.height,
|
||
|
equRect.x + equRect.width );
|
||
|
*/
|
||
|
/* rows=sum->rows;
|
||
|
cols=sum->cols;
|
||
|
cascade->p0 = equRect.y*cols + equRect.x;
|
||
|
cascade->p1 = equRect.y*cols + equRect.x + equRect.width;
|
||
|
cascade->p2 = (equRect.y + equRect.height) * cols + equRect.x;
|
||
|
cascade->p3 = (equRect.y + equRect.height) * cols + equRect.x + equRect.width ;
|
||
|
*/
|
||
|
/*
|
||
|
cascade->pq0 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x);
|
||
|
cascade->pq1 = sqsum_elem_ptr(*sqsum, equRect.y, equRect.x + equRect.width );
|
||
|
cascade->pq2 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height, equRect.x );
|
||
|
cascade->pq3 = sqsum_elem_ptr(*sqsum, equRect.y + equRect.height,
|
||
|
equRect.x + equRect.width );
|
||
|
*/
|
||
|
/* init pointers in haar features according to real window size and
|
||
|
given image pointers */
|
||
|
/* for( i = 0; i < _cascade->count; i++ )
|
||
|
{
|
||
|
int j, k, l;
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||
|
{
|
||
|
for( l = 0; l < cascade->stage_classifier[i].classifier[j].count; l++ )
|
||
|
{
|
||
|
CvHaarFeature* feature =
|
||
|
&_cascade->stage_classifier[i].classifier[j].haar_feature[l];
|
||
|
*/ /* GpuHidHaarClassifier* classifier =
|
||
|
cascade->stage_classifier[i].classifier + j; */
|
||
|
//GpuHidHaarFeature* hidfeature =
|
||
|
// &cascade->stage_classifier[i].classifier[j].node[l].feature;
|
||
|
/* double sum0 = 0, area0 = 0;
|
||
|
CvRect r[3];
|
||
|
|
||
|
int base_w = -1, base_h = -1;
|
||
|
int new_base_w = 0, new_base_h = 0;
|
||
|
int kx, ky;
|
||
|
int flagx = 0, flagy = 0;
|
||
|
int x0 = 0, y0 = 0;
|
||
|
int nr;
|
||
|
*/
|
||
|
/* align blocks */
|
||
|
/* for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
|
||
|
{
|
||
|
//if( !hidfeature->rect[k].p0 )
|
||
|
// break;
|
||
|
r[k] = feature->rect[k].r;
|
||
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
|
||
|
base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
|
||
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
|
||
|
base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
|
||
|
}
|
||
|
|
||
|
nr = k;
|
||
|
|
||
|
base_w += 1;
|
||
|
base_h += 1;
|
||
|
kx = r[0].width / base_w;
|
||
|
ky = r[0].height / base_h;
|
||
|
|
||
|
if( kx <= 0 )
|
||
|
{
|
||
|
flagx = 1;
|
||
|
new_base_w = cvRound( r[0].width * scale ) / kx;
|
||
|
x0 = cvRound( r[0].x * scale );
|
||
|
}
|
||
|
|
||
|
if( ky <= 0 )
|
||
|
{
|
||
|
flagy = 1;
|
||
|
new_base_h = cvRound( r[0].height * scale ) / ky;
|
||
|
y0 = cvRound( r[0].y * scale );
|
||
|
}
|
||
|
|
||
|
for( k = 0; k < nr; k++ )
|
||
|
{
|
||
|
CvRect tr;
|
||
|
double correction_ratio;
|
||
|
|
||
|
if( flagx )
|
||
|
{
|
||
|
tr.x = (r[k].x - r[0].x) * new_base_w / base_w + x0;
|
||
|
tr.width = r[k].width * new_base_w / base_w;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.x = cvRound( r[k].x * scale );
|
||
|
tr.width = cvRound( r[k].width * scale );
|
||
|
}
|
||
|
|
||
|
if( flagy )
|
||
|
{
|
||
|
tr.y = (r[k].y - r[0].y) * new_base_h / base_h + y0;
|
||
|
tr.height = r[k].height * new_base_h / base_h;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
tr.y = cvRound( r[k].y * scale );
|
||
|
tr.height = cvRound( r[k].height * scale );
|
||
|
}
|
||
|
|
||
|
#if CV_ADJUST_WEIGHTS
|
||
|
{
|
||
|
// RAINER START
|
||
|
const float orig_feature_size = (float)(feature->rect[k].r.width)*feature->rect[k].r.height;
|
||
|
const float orig_norm_size = (float)(_cascade->orig_window_size.width)*(_cascade->orig_window_size.height);
|
||
|
const float feature_size = float(tr.width*tr.height);
|
||
|
//const float normSize = float(equRect.width*equRect.height);
|
||
|
float target_ratio = orig_feature_size / orig_norm_size;
|
||
|
//float isRatio = featureSize / normSize;
|
||
|
//correctionRatio = targetRatio / isRatio / normSize;
|
||
|
correction_ratio = target_ratio / feature_size;
|
||
|
// RAINER END
|
||
|
}
|
||
|
#else
|
||
|
correction_ratio = weight_scale * (!feature->tilted ? 1 : 0.5);
|
||
|
#endif
|
||
|
|
||
|
if( !feature->tilted )
|
||
|
{
|
||
|
hidfeature->rect[k].p0 = tr.y * rows + tr.x;
|
||
|
hidfeature->rect[k].p1 = tr.y * rows + tr.x + tr.width;
|
||
|
hidfeature->rect[k].p2 = (tr.y + tr.height) * rows + tr.x;
|
||
|
hidfeature->rect[k].p3 = (tr.y + tr.height) * rows + tr.x + tr.width;
|
||
|
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
hidfeature->rect[k].p2 = (tr.y + tr.width) * rows + tr.x + tr.width;
|
||
|
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * rows + tr.x + tr.width - tr.height;
|
||
|
hidfeature->rect[k].p0 = tr.y*rows + tr.x;
|
||
|
hidfeature->rect[k].p1 = (tr.y + tr.height) * rows + tr.x - tr.height;
|
||
|
|
||
|
}
|
||
|
|
||
|
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
|
||
|
|
||
|
if( k == 0 )
|
||
|
area0 = tr.width * tr.height;
|
||
|
else
|
||
|
;// sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
|
||
|
}
|
||
|
|
||
|
//hidfeature->rect[0].weight = (float)(-sum0/area0);*/
|
||
|
// } /* l */
|
||
|
// } /* j */
|
||
|
// }
|
||
|
//}
|
||
|
|
||
|
CV_INLINE
|
||
|
double gpuEvalHidHaarClassifier( GpuHidHaarClassifier *classifier,
|
||
|
double variance_norm_factor,
|
||
|
size_t p_offset )
|
||
|
{
|
||
|
/*
|
||
|
int idx = 0;
|
||
|
do
|
||
|
{
|
||
|
GpuHidHaarTreeNode* node = classifier->node + idx;
|
||
|
double t = node->threshold * variance_norm_factor;
|
||
|
|
||
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||
|
|
||
|
if( node->feature.rect[2].p0 )
|
||
|
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||
|
|
||
|
idx = sum < t ? node->left : node->right;
|
||
|
}
|
||
|
while( idx > 0 );
|
||
|
return classifier->alpha[-idx];
|
||
|
*/
|
||
|
return 0.;
|
||
|
}
|
||
|
|
||
|
|
||
|
CV_IMPL int
|
||
|
gpuRunHaarClassifierCascade( const CvHaarClassifierCascade *_cascade,
|
||
|
CvPoint pt, int start_stage )
|
||
|
{
|
||
|
/*
|
||
|
int result = -1;
|
||
|
|
||
|
int p_offset, pq_offset;
|
||
|
int i, j;
|
||
|
double mean, variance_norm_factor;
|
||
|
GpuHidHaarClassifierCascade* cascade;
|
||
|
|
||
|
if( !CV_IS_HAAR_CLASSIFIER(_cascade) )
|
||
|
CV_Error( !_cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid cascade pointer" );
|
||
|
|
||
|
cascade = (GpuHidHaarClassifierCascade*) _cascade->hid_cascade;
|
||
|
if( !cascade )
|
||
|
CV_Error( CV_StsNullPtr, "Hidden cascade has not been created.\n"
|
||
|
"Use gpuSetImagesForHaarClassifierCascade" );
|
||
|
|
||
|
if( pt.x < 0 || pt.y < 0 ||
|
||
|
pt.x + _cascade->real_window_size.width >= cascade->sum.width-2 ||
|
||
|
pt.y + _cascade->real_window_size.height >= cascade->sum.height-2 )
|
||
|
return -1;
|
||
|
|
||
|
p_offset = pt.y * (cascade->sum.step/sizeof(sumtype)) + pt.x;
|
||
|
pq_offset = pt.y * (cascade->sqsum.step/sizeof(sqsumtype)) + pt.x;
|
||
|
mean = calc_sum(*cascade,p_offset)*cascade->inv_window_area;
|
||
|
variance_norm_factor = cascade->pq0[pq_offset] - cascade->pq1[pq_offset] -
|
||
|
cascade->pq2[pq_offset] + cascade->pq3[pq_offset];
|
||
|
variance_norm_factor = variance_norm_factor*cascade->inv_window_area - mean*mean;
|
||
|
if( variance_norm_factor >= 0. )
|
||
|
variance_norm_factor = sqrt(variance_norm_factor);
|
||
|
else
|
||
|
variance_norm_factor = 1.;
|
||
|
|
||
|
|
||
|
if( cascade->is_stump_based )
|
||
|
{
|
||
|
for( i = start_stage; i < cascade->count; i++ )
|
||
|
{
|
||
|
double stage_sum = 0;
|
||
|
|
||
|
if( cascade->stage_classifier[i].two_rects )
|
||
|
{
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||
|
{
|
||
|
GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||
|
GpuHidHaarTreeNode* node = classifier->node;
|
||
|
double t = node->threshold*variance_norm_factor;
|
||
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||
|
stage_sum += classifier->alpha[sum >= t];
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
for( j = 0; j < cascade->stage_classifier[i].count; j++ )
|
||
|
{
|
||
|
GpuHidHaarClassifier* classifier = cascade->stage_classifier[i].classifier + j;
|
||
|
GpuHidHaarTreeNode* node = classifier->node;
|
||
|
double t = node->threshold*variance_norm_factor;
|
||
|
double sum = calc_sum(node->feature.rect[0],p_offset) * node->feature.rect[0].weight;
|
||
|
sum += calc_sum(node->feature.rect[1],p_offset) * node->feature.rect[1].weight;
|
||
|
if( node->feature.rect[2].p0 )
|
||
|
sum += calc_sum(node->feature.rect[2],p_offset) * node->feature.rect[2].weight;
|
||
|
|
||
|
stage_sum += classifier->alpha[sum >= t];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if( stage_sum < cascade->stage_classifier[i].threshold )
|
||
|
return -i;
|
||
|
}
|
||
|
}
|
||
|
*/
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
namespace cv
|
||
|
{
|
||
|
namespace ocl
|
||
|
{
|
||
|
|
||
|
struct gpuHaarDetectObjects_ScaleImage_Invoker
|
||
|
{
|
||
|
gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade,
|
||
|
int _stripSize, double _factor,
|
||
|
const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1,
|
||
|
Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec )
|
||
|
{
|
||
|
cascade = _cascade;
|
||
|
stripSize = _stripSize;
|
||
|
factor = _factor;
|
||
|
sum1 = _sum1;
|
||
|
sqsum1 = _sqsum1;
|
||
|
norm1 = _norm1;
|
||
|
mask1 = _mask1;
|
||
|
equRect = _equRect;
|
||
|
vec = &_vec;
|
||
|
}
|
||
|
|
||
|
void operator()( const BlockedRange &range ) const
|
||
|
{
|
||
|
Size winSize0 = cascade->orig_window_size;
|
||
|
Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor));
|
||
|
int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height);
|
||
|
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1);
|
||
|
int x, y, ystep = factor > 2 ? 1 : 2;
|
||
|
|
||
|
for( y = y1; y < y2; y += ystep )
|
||
|
for( x = 0; x < ssz.width; x += ystep )
|
||
|
{
|
||
|
if( gpuRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 ) > 0 )
|
||
|
vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor),
|
||
|
winSize.width, winSize.height));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const CvHaarClassifierCascade *cascade;
|
||
|
int stripSize;
|
||
|
double factor;
|
||
|
Mat sum1, sqsum1, *norm1, *mask1;
|
||
|
Rect equRect;
|
||
|
ConcurrentRectVector *vec;
|
||
|
};
|
||
|
|
||
|
|
||
|
struct gpuHaarDetectObjects_ScaleCascade_Invoker
|
||
|
{
|
||
|
gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade,
|
||
|
Size _winsize, const Range &_xrange, double _ystep,
|
||
|
size_t _sumstep, const int **_p, const int **_pq,
|
||
|
ConcurrentRectVector &_vec )
|
||
|
{
|
||
|
cascade = _cascade;
|
||
|
winsize = _winsize;
|
||
|
xrange = _xrange;
|
||
|
ystep = _ystep;
|
||
|
sumstep = _sumstep;
|
||
|
p = _p;
|
||
|
pq = _pq;
|
||
|
vec = &_vec;
|
||
|
}
|
||
|
|
||
|
void operator()( const BlockedRange &range ) const
|
||
|
{
|
||
|
int iy, startY = range.begin(), endY = range.end();
|
||
|
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3];
|
||
|
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3];
|
||
|
bool doCannyPruning = p0 != 0;
|
||
|
int sstep = (int)(sumstep / sizeof(p0[0]));
|
||
|
|
||
|
for( iy = startY; iy < endY; iy++ )
|
||
|
{
|
||
|
int ix, y = cvRound(iy * ystep), ixstep = 1;
|
||
|
for( ix = xrange.start; ix < xrange.end; ix += ixstep )
|
||
|
{
|
||
|
int x = cvRound(ix * ystep); // it should really be ystep, not ixstep
|
||
|
|
||
|
if( doCannyPruning )
|
||
|
{
|
||
|
int offset = y * sstep + x;
|
||
|
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
|
||
|
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
|
||
|
if( s < 100 || sq < 20 )
|
||
|
{
|
||
|
ixstep = 2;
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int result = gpuRunHaarClassifierCascade( cascade, cvPoint(x, y), 0 );
|
||
|
if( result > 0 )
|
||
|
vec->push_back(Rect(x, y, winsize.width, winsize.height));
|
||
|
ixstep = result != 0 ? 1 : 2;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const CvHaarClassifierCascade *cascade;
|
||
|
double ystep;
|
||
|
size_t sumstep;
|
||
|
Size winsize;
|
||
|
Range xrange;
|
||
|
const int **p;
|
||
|
const int **pq;
|
||
|
ConcurrentRectVector *vec;
|
||
|
};
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature
|
||
|
{
|
||
|
struct _ALIGNED_ON(32)
|
||
|
{
|
||
|
int p0 _ALIGNED_ON(4);
|
||
|
int p1 _ALIGNED_ON(4);
|
||
|
int p2 _ALIGNED_ON(4);
|
||
|
int p3 _ALIGNED_ON(4);
|
||
|
float weight _ALIGNED_ON(4);
|
||
|
}
|
||
|
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32);
|
||
|
}
|
||
|
GpuHidHaarFeature;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
|
||
|
{
|
||
|
int left _ALIGNED_ON(4);
|
||
|
int right _ALIGNED_ON(4);
|
||
|
float threshold _ALIGNED_ON(4);
|
||
|
int p0[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16);
|
||
|
int p1[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16);
|
||
|
int p2[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16);
|
||
|
int p3[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16);
|
||
|
float weight[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(16);
|
||
|
float alpha[2] _ALIGNED_ON(8);
|
||
|
// GpuHidHaarFeature feature __attribute__((aligned (128)));
|
||
|
}
|
||
|
GpuHidHaarTreeNode;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(32) GpuHidHaarClassifier
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
//CvHaarFeature* orig_feature;
|
||
|
GpuHidHaarTreeNode* node _ALIGNED_ON(8);
|
||
|
float* alpha _ALIGNED_ON(8);
|
||
|
}
|
||
|
GpuHidHaarClassifier;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(64) __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
float threshold _ALIGNED_ON(4);
|
||
|
int two_rects _ALIGNED_ON(4);
|
||
|
GpuHidHaarClassifier* classifier _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier* next _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier* child _ALIGNED_ON(8);
|
||
|
struct GpuHidHaarStageClassifier* parent _ALIGNED_ON(8);
|
||
|
}
|
||
|
GpuHidHaarStageClassifier;
|
||
|
|
||
|
|
||
|
typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
|
||
|
{
|
||
|
int count _ALIGNED_ON(4);
|
||
|
int is_stump_based _ALIGNED_ON(4);
|
||
|
int has_tilted_features _ALIGNED_ON(4);
|
||
|
int is_tree _ALIGNED_ON(4);
|
||
|
int pq0 _ALIGNED_ON(4);
|
||
|
int pq1 _ALIGNED_ON(4);
|
||
|
int pq2 _ALIGNED_ON(4);
|
||
|
int pq3 _ALIGNED_ON(4);
|
||
|
int p0 _ALIGNED_ON(4);
|
||
|
int p1 _ALIGNED_ON(4);
|
||
|
int p2 _ALIGNED_ON(4);
|
||
|
int p3 _ALIGNED_ON(4);
|
||
|
float inv_window_area _ALIGNED_ON(4);
|
||
|
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
||
|
}GpuHidHaarClassifierCascade;
|
||
|
*/
|
||
|
/* End of file. */
|