2010-07-16 12:54:53 +00:00
|
|
|
/* sormbr.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static integer c__1 = 1;
|
|
|
|
static integer c_n1 = -1;
|
|
|
|
static integer c__2 = 2;
|
|
|
|
|
|
|
|
/* Subroutine */ int sormbr_(char *vect, char *side, char *trans, integer *m,
|
|
|
|
integer *n, integer *k, real *a, integer *lda, real *tau, real *c__,
|
|
|
|
integer *ldc, real *work, integer *lwork, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
address a__1[2];
|
|
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
|
|
|
|
char ch__1[2];
|
|
|
|
|
|
|
|
/* Builtin functions */
|
|
|
|
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i1, i2, nb, mi, ni, nq, nw;
|
|
|
|
logical left;
|
|
|
|
extern logical lsame_(char *, char *);
|
|
|
|
integer iinfo;
|
|
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
|
|
|
|
integer *, integer *);
|
|
|
|
logical notran, applyq;
|
|
|
|
char transt[1];
|
|
|
|
extern /* Subroutine */ int sormlq_(char *, char *, integer *, integer *,
|
|
|
|
integer *, real *, integer *, real *, real *, integer *, real *,
|
|
|
|
integer *, integer *);
|
|
|
|
integer lwkopt;
|
|
|
|
logical lquery;
|
|
|
|
extern /* Subroutine */ int sormqr_(char *, char *, integer *, integer *,
|
|
|
|
integer *, real *, integer *, real *, real *, integer *, real *,
|
|
|
|
integer *, integer *);
|
|
|
|
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* If VECT = 'Q', SORMBR overwrites the general real M-by-N matrix C */
|
|
|
|
/* with */
|
|
|
|
/* SIDE = 'L' SIDE = 'R' */
|
|
|
|
/* TRANS = 'N': Q * C C * Q */
|
|
|
|
/* TRANS = 'T': Q**T * C C * Q**T */
|
|
|
|
|
|
|
|
/* If VECT = 'P', SORMBR overwrites the general real M-by-N matrix C */
|
|
|
|
/* with */
|
|
|
|
/* SIDE = 'L' SIDE = 'R' */
|
|
|
|
/* TRANS = 'N': P * C C * P */
|
|
|
|
/* TRANS = 'T': P**T * C C * P**T */
|
|
|
|
|
|
|
|
/* Here Q and P**T are the orthogonal matrices determined by SGEBRD when */
|
|
|
|
/* reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */
|
|
|
|
/* P**T are defined as products of elementary reflectors H(i) and G(i) */
|
|
|
|
/* respectively. */
|
|
|
|
|
|
|
|
/* Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
|
|
|
|
/* order of the orthogonal matrix Q or P**T that is applied. */
|
|
|
|
|
|
|
|
/* If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
|
|
|
|
/* if nq >= k, Q = H(1) H(2) . . . H(k); */
|
|
|
|
/* if nq < k, Q = H(1) H(2) . . . H(nq-1). */
|
|
|
|
|
|
|
|
/* If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
|
|
|
|
/* if k < nq, P = G(1) G(2) . . . G(k); */
|
|
|
|
/* if k >= nq, P = G(1) G(2) . . . G(nq-1). */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* VECT (input) CHARACTER*1 */
|
|
|
|
/* = 'Q': apply Q or Q**T; */
|
|
|
|
/* = 'P': apply P or P**T. */
|
|
|
|
|
|
|
|
/* SIDE (input) CHARACTER*1 */
|
|
|
|
/* = 'L': apply Q, Q**T, P or P**T from the Left; */
|
|
|
|
/* = 'R': apply Q, Q**T, P or P**T from the Right. */
|
|
|
|
|
|
|
|
/* TRANS (input) CHARACTER*1 */
|
|
|
|
/* = 'N': No transpose, apply Q or P; */
|
|
|
|
/* = 'T': Transpose, apply Q**T or P**T. */
|
|
|
|
|
|
|
|
/* M (input) INTEGER */
|
|
|
|
/* The number of rows of the matrix C. M >= 0. */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The number of columns of the matrix C. N >= 0. */
|
|
|
|
|
|
|
|
/* K (input) INTEGER */
|
|
|
|
/* If VECT = 'Q', the number of columns in the original */
|
|
|
|
/* matrix reduced by SGEBRD. */
|
|
|
|
/* If VECT = 'P', the number of rows in the original */
|
|
|
|
/* matrix reduced by SGEBRD. */
|
|
|
|
/* K >= 0. */
|
|
|
|
|
|
|
|
/* A (input) REAL array, dimension */
|
|
|
|
/* (LDA,min(nq,K)) if VECT = 'Q' */
|
|
|
|
/* (LDA,nq) if VECT = 'P' */
|
|
|
|
/* The vectors which define the elementary reflectors H(i) and */
|
|
|
|
/* G(i), whose products determine the matrices Q and P, as */
|
|
|
|
/* returned by SGEBRD. */
|
|
|
|
|
|
|
|
/* LDA (input) INTEGER */
|
|
|
|
/* The leading dimension of the array A. */
|
|
|
|
/* If VECT = 'Q', LDA >= max(1,nq); */
|
|
|
|
/* if VECT = 'P', LDA >= max(1,min(nq,K)). */
|
|
|
|
|
|
|
|
/* TAU (input) REAL array, dimension (min(nq,K)) */
|
|
|
|
/* TAU(i) must contain the scalar factor of the elementary */
|
|
|
|
/* reflector H(i) or G(i) which determines Q or P, as returned */
|
|
|
|
/* by SGEBRD in the array argument TAUQ or TAUP. */
|
|
|
|
|
|
|
|
/* C (input/output) REAL array, dimension (LDC,N) */
|
|
|
|
/* On entry, the M-by-N matrix C. */
|
|
|
|
/* On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */
|
|
|
|
/* or P*C or P**T*C or C*P or C*P**T. */
|
|
|
|
|
|
|
|
/* LDC (input) INTEGER */
|
|
|
|
/* The leading dimension of the array C. LDC >= max(1,M). */
|
|
|
|
|
|
|
|
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
|
|
|
|
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
|
|
|
|
|
|
/* LWORK (input) INTEGER */
|
|
|
|
/* The dimension of the array WORK. */
|
|
|
|
/* If SIDE = 'L', LWORK >= max(1,N); */
|
|
|
|
/* if SIDE = 'R', LWORK >= max(1,M). */
|
|
|
|
/* For optimum performance LWORK >= N*NB if SIDE = 'L', and */
|
|
|
|
/* LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
|
|
|
|
/* blocksize. */
|
|
|
|
|
|
|
|
/* If LWORK = -1, then a workspace query is assumed; the routine */
|
|
|
|
/* only calculates the optimal size of the WORK array, returns */
|
|
|
|
/* this value as the first entry of the WORK array, and no error */
|
|
|
|
/* message related to LWORK is issued by XERBLA. */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input arguments */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
--tau;
|
|
|
|
c_dim1 = *ldc;
|
|
|
|
c_offset = 1 + c_dim1;
|
|
|
|
c__ -= c_offset;
|
|
|
|
--work;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
applyq = lsame_(vect, "Q");
|
|
|
|
left = lsame_(side, "L");
|
|
|
|
notran = lsame_(trans, "N");
|
|
|
|
lquery = *lwork == -1;
|
|
|
|
|
|
|
|
/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
nq = *m;
|
|
|
|
nw = *n;
|
|
|
|
} else {
|
|
|
|
nq = *n;
|
|
|
|
nw = *m;
|
|
|
|
}
|
|
|
|
if (! applyq && ! lsame_(vect, "P")) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (! left && ! lsame_(side, "R")) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
|
|
*info = -3;
|
|
|
|
} else if (*m < 0) {
|
|
|
|
*info = -4;
|
|
|
|
} else if (*n < 0) {
|
|
|
|
*info = -5;
|
|
|
|
} else if (*k < 0) {
|
|
|
|
*info = -6;
|
|
|
|
} else /* if(complicated condition) */ {
|
|
|
|
/* Computing MAX */
|
|
|
|
i__1 = 1, i__2 = min(nq,*k);
|
|
|
|
if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
|
|
|
|
*info = -8;
|
|
|
|
} else if (*ldc < max(1,*m)) {
|
|
|
|
*info = -11;
|
|
|
|
} else if (*lwork < max(1,nw) && ! lquery) {
|
|
|
|
*info = -13;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*info == 0) {
|
|
|
|
if (applyq) {
|
|
|
|
if (left) {
|
|
|
|
/* Writing concatenation */
|
|
|
|
i__3[0] = 1, a__1[0] = side;
|
|
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
|
|
i__1 = *m - 1;
|
|
|
|
i__2 = *m - 1;
|
|
|
|
nb = ilaenv_(&c__1, "SORMQR", ch__1, &i__1, n, &i__2, &c_n1);
|
|
|
|
} else {
|
|
|
|
/* Writing concatenation */
|
|
|
|
i__3[0] = 1, a__1[0] = side;
|
|
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
|
|
i__1 = *n - 1;
|
|
|
|
i__2 = *n - 1;
|
|
|
|
nb = ilaenv_(&c__1, "SORMQR", ch__1, m, &i__1, &i__2, &c_n1);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (left) {
|
|
|
|
/* Writing concatenation */
|
|
|
|
i__3[0] = 1, a__1[0] = side;
|
|
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
|
|
i__1 = *m - 1;
|
|
|
|
i__2 = *m - 1;
|
|
|
|
nb = ilaenv_(&c__1, "SORMLQ", ch__1, &i__1, n, &i__2, &c_n1);
|
|
|
|
} else {
|
|
|
|
/* Writing concatenation */
|
|
|
|
i__3[0] = 1, a__1[0] = side;
|
|
|
|
i__3[1] = 1, a__1[1] = trans;
|
|
|
|
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
|
|
|
|
i__1 = *n - 1;
|
|
|
|
i__2 = *n - 1;
|
|
|
|
nb = ilaenv_(&c__1, "SORMLQ", ch__1, m, &i__1, &i__2, &c_n1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
lwkopt = max(1,nw) * nb;
|
|
|
|
work[1] = (real) lwkopt;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("SORMBR", &i__1);
|
|
|
|
return 0;
|
|
|
|
} else if (lquery) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Quick return if possible */
|
|
|
|
|
|
|
|
work[1] = 1.f;
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (applyq) {
|
|
|
|
|
|
|
|
/* Apply Q */
|
|
|
|
|
|
|
|
if (nq >= *k) {
|
|
|
|
|
|
|
|
/* Q was determined by a call to SGEBRD with nq >= k */
|
|
|
|
|
|
|
|
sormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
|
|
c_offset], ldc, &work[1], lwork, &iinfo);
|
|
|
|
} else if (nq > 1) {
|
|
|
|
|
|
|
|
/* Q was determined by a call to SGEBRD with nq < k */
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
mi = *m - 1;
|
|
|
|
ni = *n;
|
|
|
|
i1 = 2;
|
|
|
|
i2 = 1;
|
|
|
|
} else {
|
|
|
|
mi = *m;
|
|
|
|
ni = *n - 1;
|
|
|
|
i1 = 1;
|
|
|
|
i2 = 2;
|
|
|
|
}
|
|
|
|
i__1 = nq - 1;
|
|
|
|
sormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
|
|
|
|
, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Apply P */
|
|
|
|
|
|
|
|
if (notran) {
|
|
|
|
*(unsigned char *)transt = 'T';
|
|
|
|
} else {
|
|
|
|
*(unsigned char *)transt = 'N';
|
|
|
|
}
|
|
|
|
if (nq > *k) {
|
|
|
|
|
|
|
|
/* P was determined by a call to SGEBRD with nq > k */
|
|
|
|
|
|
|
|
sormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
|
|
|
|
c_offset], ldc, &work[1], lwork, &iinfo);
|
|
|
|
} else if (nq > 1) {
|
|
|
|
|
|
|
|
/* P was determined by a call to SGEBRD with nq <= k */
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
mi = *m - 1;
|
|
|
|
ni = *n;
|
|
|
|
i1 = 2;
|
|
|
|
i2 = 1;
|
|
|
|
} else {
|
|
|
|
mi = *m;
|
|
|
|
ni = *n - 1;
|
|
|
|
i1 = 1;
|
|
|
|
i2 = 2;
|
|
|
|
}
|
|
|
|
i__1 = nq - 1;
|
|
|
|
sormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda,
|
|
|
|
&tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
|
|
|
|
iinfo);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
work[1] = (real) lwkopt;
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of SORMBR */
|
|
|
|
|
|
|
|
} /* sormbr_ */
|