2010-07-16 12:54:53 +00:00
|
|
|
/* dorml2.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
|
|
|
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
|
|
|
|
c__, integer *ldc, doublereal *work, integer *info)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
|
|
|
|
doublereal aii;
|
|
|
|
logical left;
|
|
|
|
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
|
|
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
|
|
doublereal *);
|
|
|
|
extern logical lsame_(char *, char *);
|
|
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
logical notran;
|
|
|
|
|
|
|
|
|
2010-07-16 12:54:53 +00:00
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
2010-05-11 17:44:00 +00:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DORML2 overwrites the general real m by n matrix C with */
|
|
|
|
|
|
|
|
/* Q * C if SIDE = 'L' and TRANS = 'N', or */
|
|
|
|
|
|
|
|
/* Q'* C if SIDE = 'L' and TRANS = 'T', or */
|
|
|
|
|
|
|
|
/* C * Q if SIDE = 'R' and TRANS = 'N', or */
|
|
|
|
|
|
|
|
/* C * Q' if SIDE = 'R' and TRANS = 'T', */
|
|
|
|
|
|
|
|
/* where Q is a real orthogonal matrix defined as the product of k */
|
|
|
|
/* elementary reflectors */
|
|
|
|
|
|
|
|
/* Q = H(k) . . . H(2) H(1) */
|
|
|
|
|
|
|
|
/* as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n */
|
|
|
|
/* if SIDE = 'R'. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* SIDE (input) CHARACTER*1 */
|
|
|
|
/* = 'L': apply Q or Q' from the Left */
|
|
|
|
/* = 'R': apply Q or Q' from the Right */
|
|
|
|
|
|
|
|
/* TRANS (input) CHARACTER*1 */
|
|
|
|
/* = 'N': apply Q (No transpose) */
|
|
|
|
/* = 'T': apply Q' (Transpose) */
|
|
|
|
|
|
|
|
/* M (input) INTEGER */
|
|
|
|
/* The number of rows of the matrix C. M >= 0. */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The number of columns of the matrix C. N >= 0. */
|
|
|
|
|
|
|
|
/* K (input) INTEGER */
|
|
|
|
/* The number of elementary reflectors whose product defines */
|
|
|
|
/* the matrix Q. */
|
|
|
|
/* If SIDE = 'L', M >= K >= 0; */
|
|
|
|
/* if SIDE = 'R', N >= K >= 0. */
|
|
|
|
|
|
|
|
/* A (input) DOUBLE PRECISION array, dimension */
|
|
|
|
/* (LDA,M) if SIDE = 'L', */
|
|
|
|
/* (LDA,N) if SIDE = 'R' */
|
|
|
|
/* The i-th row must contain the vector which defines the */
|
|
|
|
/* elementary reflector H(i), for i = 1,2,...,k, as returned by */
|
|
|
|
/* DGELQF in the first k rows of its array argument A. */
|
|
|
|
/* A is modified by the routine but restored on exit. */
|
|
|
|
|
|
|
|
/* LDA (input) INTEGER */
|
|
|
|
/* The leading dimension of the array A. LDA >= max(1,K). */
|
|
|
|
|
|
|
|
/* TAU (input) DOUBLE PRECISION array, dimension (K) */
|
|
|
|
/* TAU(i) must contain the scalar factor of the elementary */
|
|
|
|
/* reflector H(i), as returned by DGELQF. */
|
|
|
|
|
|
|
|
/* C (input/output) DOUBLE PRECISION array, dimension (LDC,N) */
|
|
|
|
/* On entry, the m by n matrix C. */
|
|
|
|
/* On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q. */
|
|
|
|
|
|
|
|
/* LDC (input) INTEGER */
|
|
|
|
/* The leading dimension of the array C. LDC >= max(1,M). */
|
|
|
|
|
|
|
|
/* WORK (workspace) DOUBLE PRECISION array, dimension */
|
|
|
|
/* (N) if SIDE = 'L', */
|
|
|
|
/* (M) if SIDE = 'R' */
|
|
|
|
|
|
|
|
/* INFO (output) INTEGER */
|
|
|
|
/* = 0: successful exit */
|
|
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Test the input arguments */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
--tau;
|
|
|
|
c_dim1 = *ldc;
|
|
|
|
c_offset = 1 + c_dim1;
|
|
|
|
c__ -= c_offset;
|
|
|
|
--work;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
*info = 0;
|
|
|
|
left = lsame_(side, "L");
|
|
|
|
notran = lsame_(trans, "N");
|
|
|
|
|
|
|
|
/* NQ is the order of Q */
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
nq = *m;
|
|
|
|
} else {
|
|
|
|
nq = *n;
|
|
|
|
}
|
|
|
|
if (! left && ! lsame_(side, "R")) {
|
|
|
|
*info = -1;
|
|
|
|
} else if (! notran && ! lsame_(trans, "T")) {
|
|
|
|
*info = -2;
|
|
|
|
} else if (*m < 0) {
|
|
|
|
*info = -3;
|
|
|
|
} else if (*n < 0) {
|
|
|
|
*info = -4;
|
|
|
|
} else if (*k < 0 || *k > nq) {
|
|
|
|
*info = -5;
|
|
|
|
} else if (*lda < max(1,*k)) {
|
|
|
|
*info = -7;
|
|
|
|
} else if (*ldc < max(1,*m)) {
|
|
|
|
*info = -10;
|
|
|
|
}
|
|
|
|
if (*info != 0) {
|
|
|
|
i__1 = -(*info);
|
|
|
|
xerbla_("DORML2", &i__1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Quick return if possible */
|
|
|
|
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (left && notran || ! left && ! notran) {
|
|
|
|
i1 = 1;
|
|
|
|
i2 = *k;
|
|
|
|
i3 = 1;
|
|
|
|
} else {
|
|
|
|
i1 = *k;
|
|
|
|
i2 = 1;
|
|
|
|
i3 = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (left) {
|
|
|
|
ni = *n;
|
|
|
|
jc = 1;
|
|
|
|
} else {
|
|
|
|
mi = *m;
|
|
|
|
ic = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
i__1 = i2;
|
|
|
|
i__2 = i3;
|
|
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
|
|
if (left) {
|
|
|
|
|
|
|
|
/* H(i) is applied to C(i:m,1:n) */
|
|
|
|
|
|
|
|
mi = *m - i__ + 1;
|
|
|
|
ic = i__;
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* H(i) is applied to C(1:m,i:n) */
|
|
|
|
|
|
|
|
ni = *n - i__ + 1;
|
|
|
|
jc = i__;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Apply H(i) */
|
|
|
|
|
|
|
|
aii = a[i__ + i__ * a_dim1];
|
|
|
|
a[i__ + i__ * a_dim1] = 1.;
|
|
|
|
dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[
|
|
|
|
ic + jc * c_dim1], ldc, &work[1]);
|
|
|
|
a[i__ + i__ * a_dim1] = aii;
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DORML2 */
|
|
|
|
|
|
|
|
} /* dorml2_ */
|