2010-07-16 14:54:53 +02:00
|
|
|
/* dlas2.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
2010-05-11 19:44:00 +02:00
|
|
|
#include "clapack.h"
|
|
|
|
|
2010-07-16 14:54:53 +02:00
|
|
|
|
2010-05-11 19:44:00 +02:00
|
|
|
/* Subroutine */ int dlas2_(doublereal *f, doublereal *g, doublereal *h__,
|
|
|
|
doublereal *ssmin, doublereal *ssmax)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
doublereal d__1, d__2;
|
|
|
|
|
|
|
|
/* Builtin functions */
|
|
|
|
double sqrt(doublereal);
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
doublereal c__, fa, ga, ha, as, at, au, fhmn, fhmx;
|
|
|
|
|
|
|
|
|
2010-07-16 14:54:53 +02:00
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
2010-05-11 19:44:00 +02:00
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DLAS2 computes the singular values of the 2-by-2 matrix */
|
|
|
|
/* [ F G ] */
|
|
|
|
/* [ 0 H ]. */
|
|
|
|
/* On return, SSMIN is the smaller singular value and SSMAX is the */
|
|
|
|
/* larger singular value. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* F (input) DOUBLE PRECISION */
|
|
|
|
/* The (1,1) element of the 2-by-2 matrix. */
|
|
|
|
|
|
|
|
/* G (input) DOUBLE PRECISION */
|
|
|
|
/* The (1,2) element of the 2-by-2 matrix. */
|
|
|
|
|
|
|
|
/* H (input) DOUBLE PRECISION */
|
|
|
|
/* The (2,2) element of the 2-by-2 matrix. */
|
|
|
|
|
|
|
|
/* SSMIN (output) DOUBLE PRECISION */
|
|
|
|
/* The smaller singular value. */
|
|
|
|
|
|
|
|
/* SSMAX (output) DOUBLE PRECISION */
|
|
|
|
/* The larger singular value. */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* Barring over/underflow, all output quantities are correct to within */
|
|
|
|
/* a few units in the last place (ulps), even in the absence of a guard */
|
|
|
|
/* digit in addition/subtraction. */
|
|
|
|
|
|
|
|
/* In IEEE arithmetic, the code works correctly if one matrix element is */
|
|
|
|
/* infinite. */
|
|
|
|
|
|
|
|
/* Overflow will not occur unless the largest singular value itself */
|
|
|
|
/* overflows, or is within a few ulps of overflow. (On machines with */
|
|
|
|
/* partial overflow, like the Cray, overflow may occur if the largest */
|
|
|
|
/* singular value is within a factor of 2 of overflow.) */
|
|
|
|
|
|
|
|
/* Underflow is harmless if underflow is gradual. Otherwise, results */
|
|
|
|
/* may correspond to a matrix modified by perturbations of size near */
|
|
|
|
/* the underflow threshold. */
|
|
|
|
|
|
|
|
/* ==================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
fa = abs(*f);
|
|
|
|
ga = abs(*g);
|
|
|
|
ha = abs(*h__);
|
|
|
|
fhmn = min(fa,ha);
|
|
|
|
fhmx = max(fa,ha);
|
|
|
|
if (fhmn == 0.) {
|
|
|
|
*ssmin = 0.;
|
|
|
|
if (fhmx == 0.) {
|
|
|
|
*ssmax = ga;
|
|
|
|
} else {
|
|
|
|
/* Computing 2nd power */
|
|
|
|
d__1 = min(fhmx,ga) / max(fhmx,ga);
|
|
|
|
*ssmax = max(fhmx,ga) * sqrt(d__1 * d__1 + 1.);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (ga < fhmx) {
|
|
|
|
as = fhmn / fhmx + 1.;
|
|
|
|
at = (fhmx - fhmn) / fhmx;
|
|
|
|
/* Computing 2nd power */
|
|
|
|
d__1 = ga / fhmx;
|
|
|
|
au = d__1 * d__1;
|
|
|
|
c__ = 2. / (sqrt(as * as + au) + sqrt(at * at + au));
|
|
|
|
*ssmin = fhmn * c__;
|
|
|
|
*ssmax = fhmx / c__;
|
|
|
|
} else {
|
|
|
|
au = fhmx / ga;
|
|
|
|
if (au == 0.) {
|
|
|
|
|
|
|
|
/* Avoid possible harmful underflow if exponent range */
|
|
|
|
/* asymmetric (true SSMIN may not underflow even if */
|
|
|
|
/* AU underflows) */
|
|
|
|
|
|
|
|
*ssmin = fhmn * fhmx / ga;
|
|
|
|
*ssmax = ga;
|
|
|
|
} else {
|
|
|
|
as = fhmn / fhmx + 1.;
|
|
|
|
at = (fhmx - fhmn) / fhmx;
|
|
|
|
/* Computing 2nd power */
|
|
|
|
d__1 = as * au;
|
|
|
|
/* Computing 2nd power */
|
|
|
|
d__2 = at * au;
|
|
|
|
c__ = 1. / (sqrt(d__1 * d__1 + 1.) + sqrt(d__2 * d__2 + 1.));
|
|
|
|
*ssmin = fhmn * c__ * au;
|
|
|
|
*ssmin += *ssmin;
|
|
|
|
*ssmax = ga / (c__ + c__);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DLAS2 */
|
|
|
|
|
|
|
|
} /* dlas2_ */
|